

Ваш надёжный партнёр

EAS®-compact®

Мы оберегаем движение этого мира

На протяжении более века профессиональный эксперт в технике привода

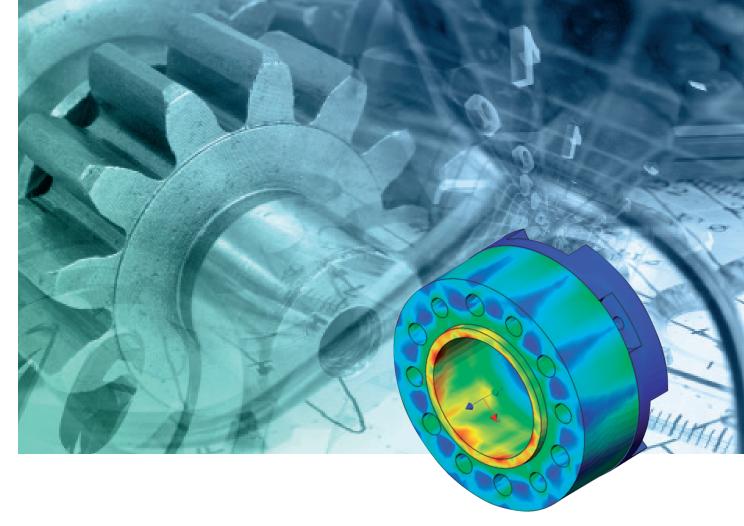
Фирма $mayr^{\circ}$ -Antriebstechnik является одной из старейших и в то же время одной из самых инновационных компаний Германии в технике привода. Начав в 1897 году, семейная компания из Альгау (Allgäu) - района на юге Баварской Швабии и юго-востоке земли Баден-Вюртемберг стала лидером мирового рынка. В штаб-квартире в Мауерштеттен (Mauerstetten) сегодня работает 550 сотрудников, во всем мире у компании их более чем 1000.

Непревзойденная стандартная Программа

mayr®-Antriebstechnik предлагает большое разнообразие предохранительных муфт, предохранительных тормозов, беззазорных соединительных муфт с компенсацией отклонений соединяемых валов и высококачественных приводов постоянного тока. А также, учитывая специфические требования заказчика, компания имеет опыт в разработке индивидуальных и экономичных решений. Поэтому многочисленные известные производители оборудования полагаются на комплексные решения фирмы mayr®-Antriebstechnik.

Наше присутствие по всему миру

Восемь отделений в Германии, подразделения в США, Франции, Великобритании, Италии, Сингапуре и Швейцарии, а также представительства в 36 других странах покрывают все важные промышленные районы и гарантируют *mayr*® оптимальное обслуживание заказчиков во всем мире.


Никаких компромиссов в безопасности

Когда речь заходит о безопасности, мы не идем на компромисс. Только изделия высшего качества гарантируют, что люди и машины не получат повреждений в случае неисправностей, внештатных и других опасных ситуаций. Безопасность Ваших сотрудников и машин мотивация для нас всегда предлагать наилучшие и самые надежные муфты или тормоза.

Фирма $mayr^{\circ}$ -Antriebstechnik имеет многочисленные перспективные патенты и является мировым лидером в технологиях соответственно для

- оптимизированных под условия применения предохранительных тормозов, к примеру, для пассажирских лифтов, сценического оборудования и осей, нагруженных под действием силы тяжести
- предохранительных муфт для защиты производства от потерь и дорогостоящих повреждений при перегрузке и
- беззазорных сервомуфт.

Традиции и инновации совмещаем лучшее двух разных сторон жизни

Традиции и инновации не являются взаимоисключающими - скорее наоборот. Они как два столпа, которые вместе гарантируют стабильность и надежность поколений. Долгосрочная стабильность, независимость, как и высокая оценка, уважение и удовлетворенность наших заказчиков, всё это имеет важное значение для традиционного семейного бизнеса.

Мы полагаемся при этом на:

- проверенное качество продукции,
- оптимальное обслуживание заказчиков,
- всестороннюю компетентность,
- глобальное присутствие,
- успешные инновации и
- эффективное управление затратами.

С нашей требовательностью неизменно предлагать нашим заказчикам лучшие технические и экономически эффективные решения мы, как надежный партнер, приобрели доверие многих ведущих промышленных компаний из всех отраслей промышленности по всему миру.

Доверьтесь нашим знаниям (know-how) и более чем 50-ти летнему опыту работы с предохранительными муфтами, предохранительными тормозами и муфтами для соединения валов.

Проверенные качество и надежность

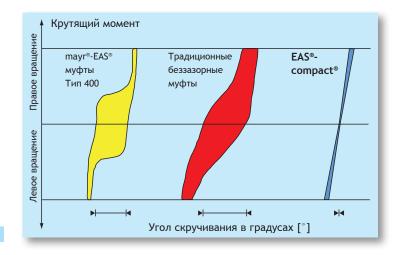
Вся продукция *тауг* проходит тщательный контроль качества. К этому относятся как меры по обеспечению качества в процессе проектирования, так и комплексный выходной контроль. Только лучшее и проверенное качество покидает завод. На испытательных стендах, прошедших контроль официальных технических органов, все изделия тщательно проверяются и настраиваются на требуемые значения. Электронная база данных, в которой архивируются контрольные значения измерений выходного контроля для каждого серийного номера изделия, обеспечивает 100-процентное отслеживание и обратную связь. По запросу мы подтвердим характеристики изделия протоколом испытания.

Сертификация менеджмента качества в соответствии с DIN EN ISO 9001: 2000 подтверждает качество сознания наших сотрудников на всех уровнях компании.

EAS®-compact® - экономически эффективная защита машин и механизмов

Принцип работы

При превышении установленного предельного значения крутящего момента муфта расцепляется. Крутящий момент сразу падает. Установленный концевой выключатель воспринимает движение расцепления муфты и отключает привод. Сигнал концевого выключателя также может использоваться для других функций управления.


После устранения причины перегрузки, EAS®-сотраст® храповые муфты и EAS®-сотраст® синхронные муфты опять автоматически входят в зацепление (подробное описание поведения муфт при входе в зацепление на стр. 5). EAS®-сотраст® рассоединяющие муфты полностью разделяют сторону привода и сторону выхода и остаются в этом состоянии до тех пор, пока они не будут намеренно введены обратно в зацепление вручную или с помощью устройств. Подробное описание рассоединяющих муфт со стр. 26.

Матрица успеха EAS®-compact®

Особенности изделия	Преимущества муфты	Ваши преимущества и выгода
передача крутящего момента без люфта	длительный срок службы низкий износ	минимальные затраты на техническое обслуживание
точная, отсчитываемая установка крутящего момента	простой монтаж и обращение	экономия времени при вводе в эксплуатацию
высокая жесткость на кручение	низкий момент инерции, компактная конструкция	высокая динамика машины
благоприятное изменение крутящего момента в трансмиссии в случае перегрузки	оптимальный выбор Размера муфты	эффективная и рациональная конструкция машины

EAS®-compact® - принцип беззазорности

Зазор (люфт) - это:

- угол скручивания между входом привода и выходным элементом муфты
- также известный как "крутильный зазор"
- не путать с люфтом при передаче момента с вала на втулку
- беззазорный означает для mayr®:
 Зазор (люфт) → 0
 (см. График)

EAS®-compact®/EAS®-NC Храповая муфта

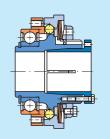
- при достижении установленного предельного крутящего момента муфта расцепляется, крутящий момент тотчас же падает
- муфта прощелкивает
- после того, как перегрузка прекращается, она автоматически снова входит в зацепление и запирается шариком на одном из следующих непосредственно друг за другом зенкованных гнездах для шариков.
- муфта снова готова к работе.

EAS®-compact®/EAS®-NC Синхронная муфта

- при превышении установленного предельного значения крутящего момента муфта расцепляется, крутящий момент сразу падает.
- после того, как перегрузка устранена, муфта автоматически снова включается в точно таком же положении через 360 угловых градусов. Для заказа возможны другие последовательности цикла, например через 180 градусов.
- муфта снова готова к работе.

EAS®-compact® рассоединяющая муфта

 EAS° -compact $^{\circ}$ рассоединяющие муфты разделяют приперегрузке привод и выход почти без остаточного крутящего момента, что делает их идеальными элементами защиты для высокоскоростных приводов и для больших моментов инерции массы.


Подробное описание Вы можете найти со стр. 26.

Оглавление

Страни	ιца
EAS®-compact® храповые муфты EAS®-compact® синхронные муфты	
Диапазон крутящего момента: 5 до 1500 н	Ιм
Описание	5
Обзор конструктивных компоновок	6
Технические данные	
• EAS®-compact® короткая втулка	8
• EAS®-compact® исполнение с двумя подшипниками	
• EAS®-compact® длинная выступающая втулка • EAS®-compact® с муфтой с металлическим	12
• ЕАЗсоппраст с муфтой с металлическим сильфоном	14
• EAS®-compact® жесткая на кручение	16
• EAS®-compact® упругая беззазорная	18
Для маленьких крутящих моментов:	
EAS®-NC храповые муфты	
EAS®-NC синхронные муфты	
Диапазон крутящего момента: 0,65 до 15	Нм
Технические данные	
• EAS®-NC короткая втулка	20
• EAS®-NC длинная выступающая втулка	20
• EAS®-NC исполнение с двумя подшипниками	22
• EAS®-NC с муфтой с металлическим сильфоном	24
EAS®-compact® рассоединяющие муф	ГЫ
Диапазон крутящего момента: 5 до 3000 F	łм
Описание	26
Обзор конструктивных компоновок	27
Технические данные	
• EAS®-compact® рассоединяющая короткая втулка	28
• EAS®-compact® рассоединяющая длинная выступающая втулка	30
• EAS®-compact® рассоединяющая жесткая на кручение, Разм. 01 до 3	32
• EAS®-compact® рассоединяющая жесткая на кручение, Разм. 4 и 5	34
• EAS®-compact® рассоединяющая упругая беззазорная	36
• EAS®-compact® рассоединяющая упругая	40
EAS®-compact® Опции	42
Технические пояснения	44
Передаваемые фрикционно крутящие моменты	50
Концевой выключатель	51
Примеры установки	54

Обзор конструктивных компоновок EAS®-compact® храповая муфта/ синхронная муфта

EAS®-compact® короткая втулка

Крутящий момент: 5 до 1500 Нм

Размеры 01 до 4 Тип 490.___.0 Фланцевая муфта для прямого монтажа приводных элементов с результирующей радиальной силой примерно по центру подшипника
 См. пример установки, Рис. 1, стр. 54

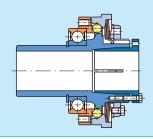
Также возможно антикоррозионное исполнение!

с конусной втулкой с пазом под шпонку

Тип 490._1_.0 Тип 490._2_.0

Стр. 8

EAS®-compact® исполнение с двумя подшипниками


Крутящий момент: 5 до 1500 Нм

Размеры 01 до 4 Тип 490.___.2 Фланцевая муфта с устойчивой сдвоенной подшипниковой опорой для ведомого элемента

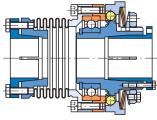
с конусной втулкой с пазом под шпонку Тип 490._1_.2 Тип 490._2 .2

Стр. 10

EAS®-compact® длинная выступающая втулка

Крутящий момент: 5 до 1500 Нм

Размеры 01 до 4 Тип 490._ _ _.1 Фланцевая муфта для очень широких приводных элементов


или для элементов с очень маленьким диаметром
В качестве опоры для приводного элемента
подходят шарикоподшипники, игольчатые подшипники
или подшипники скольжения.

См. пример установки, Рис. 2, стр. 54

с конусной втулкой Тип 490._1_.1 с пазом под шпонку Тип 490._2_.1

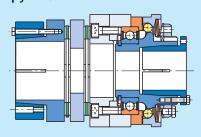
Стр. 12

EAS®-compact® с муфтой с металлическим сильфоном

Крутящий момент: 5 до 350 Нм

Размеры 01 до 3 Тип 493.___.0 Исполнение для двух валов с жесткой на кручение муфтой с металлическим сильфоном

 Компенсация осевого, радиального и углового смещений валов


См. пример установки, Рис. 4, стр. 54

Исполнения втулок:

сторона EAS®/сторона металлического сильфона конусная втулка/конусная втулка Тип 493._1_.0 втулка с пазом под шпонку/втулка с пазом под шпонку Тип 493._2_.0 конусная втулка/зажимная втулка Тип 493._3_.0

Стр. 14

EAS®-compact® жесткая на кручение

Крутящий момент: 5 до 1500 Нм

Размеры 01 до 4 Тип 496.___.0

- Исполнение для двух валов с жесткой, прочной дисковой муфтой с пакетом ламеллей
- Компенсация осевого, радиального и углового смещений валов
- Высокая жесткость на кручение

Исполнения втулок:

сторона EAS®/сторона жесткая на кручение конусная втулка/втулка с зажимным кольцом Тип 496._1_.0 втулка с пазом под шпонку/зажимная втулка Тип 496._2_.0 втулка с пазом под шпонку/втулка с пазом под шпонку

Обзор конструктивных компоновок муфт EAS®-compact® храповая муфта/синхронная муфта

Крутящий момент: 5 до 1200 Нм

Размеры 01 до 4 Тип 494.___.

- Исполнение для двух валов с упругой беззазорной муфтой
- Компенсация осевого, радиального и углового смещений валов
- Высокая способность демпфирования См. пример установки, Рис. 3, стр. 54

Исполнения втулок:

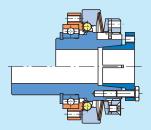
сторона EAS®/упругая сторона

конусная втулка/зажимная втулкаТип 494._0_._

конусная втулка/втулка с зажимным кольцом

Тип 494._1_._

втулка с пазом под шпонку/втулка


с пазом под шпонку

Тип 494._2_._

Стр. 18

Обзор конструктивных компоновок миниатюрных муфт EAS®-NC

EAS®-NC короткая втулка EAS®-NC длинная выступающая втулка

Крутящий момент: 0,65 до 15 Нм

Размеры 03 и 02 Тип 450.___._ EAS®-NC короткая втулка

 Фланцевая муфта для прямого монтажа приводных элементов с результирующей радиальной силой примерно по центру подшипника

с конусной втулкой Тип 450._1_.0 с пазом под шпонку Тип 450._2_.0

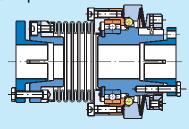
EAS®-NC длинная выступающая втулка

 Фланцевая муфта для очень широких приводных элементов или для элементов с очень маленьким диаметром

с конусной втулкой Тип 450._1_.1 с пазом под шпонку Тип 450._2_.1

Стр. 20

EAS®-NC исполнение с двумя подшипниками


Крутящий момент: 0,65 до 15 Нм

Размеры 03 и 02 Тип 450.___.2 • Фланцевая муфта с устойчивой сдвоенной подшипниковой опорой для ведомого элемента

с конусной втулкой Тип 450._1_.2 с пазом под шпонку Тип 450._2_.2

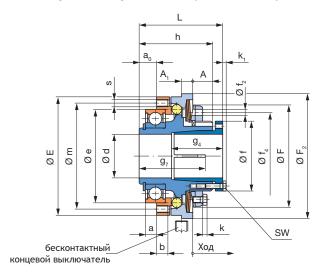
Стр. 22

EAS®-NC с муфтой с металлическим сильфоном ____

Крутящий момент: 0,65 до 15 Нм

Размеры 03 и 02 Тип 453._ _ _.0

- Исполнение для двух валов с жесткой на кручение муфтой с металлическим сильфоном
- Компенсация осевого, радиального и углового смещений валов

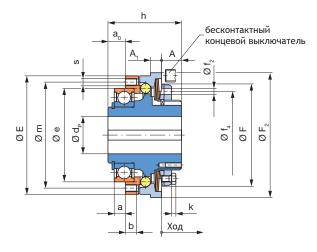

Исполнения втулок:

<u>сторона EAS®/сторона металлического сильфона</u> конусная втулка/конусная втулка Тип 453._1_.0 втулка с пазом под шпонку/втулка с пазом под шпонку Тип 453._2_.0

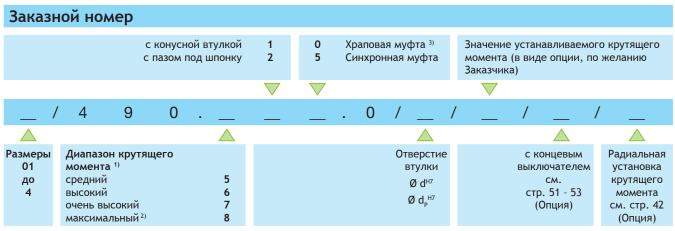
Стр. 24

EAS®-compact® короткая втулка с конусной втулкой

Тип 490. 1 .0 Размеры 01 до 4



Для антикоррозионного исполнения запрашивайте каталог!


EAS®-compact® короткая втулка с пазом под шпонку

Тип 490._2_.0 Размеры 01 до 4

Для антикоррозионного исполнения запрашивайте каталог!

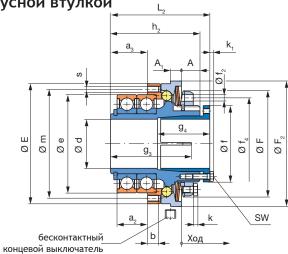
Пример: Заказной номер 1 / 490.620.0 / 25 / 60 / концевой выключатель 055.002.5 / радиальная регулировка крутящего момента

- См. Технические данные, Предельные значения крутящего момента при перегрузке $\rm M_{\rm G}$ Максимальный диапазон крутящего момента возможен только для синхронной муфты, обороты < 250 мин $^{-1}$
- Шаг деления для запирания муфты (входа муфты в зацепление) по умолчанию равен 15°; другое деление возможно в качестве опции (45°/60°/90°/120°/180°/ ...)

Toyuuuoouuo na	Технические данные					Размер ¹⁾						
технические да	технические данные			01	0	1	2	3	4			
Прополиция	Тип 490.50	M_{G}	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	70 - 175	120 - 300			
Предельные Тип 490.60	Тип 490.60	M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	140 - 350	240 - 600			
крутящего момента	Тип 490.70	$M_{\rm G}$	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	280 - 700	480 - 1200			
при перегрузке 1) 2)	Тип 490.8_ 5.0 11)	M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	350 - 875	600 - 1500			
Макс. скорость вращения n _{макс} [[мин ⁻¹]	4000	3000	2500	2000	1200	800				
Ход нажимной шайбы при перегрузке [мм]			1,2	1,5	1,8	2,0	2,2	2,5				

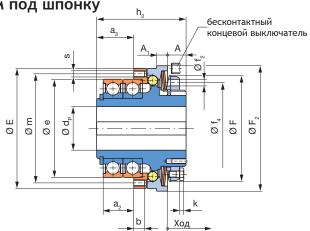
Mayautiiii	Моменты инерции и вес					Размер						
моменты инерции и вес				01	0	1	2	3	4			
CTOROUS BEVERIN	Тип 49010	-1	[10 ⁻³ KFM ²]	0,211	0,531	1,388	2,846	6,858	29,432			
Сторона втулки	Тип 49020	-1	[10 ⁻³ KFM ²]	0,205	0,505	1,302	2,630	6,329	28,443			
Сторона нажимного	Тип 49010	1	[10 ⁻³ кгм ²]	0,093	0,234	0,643	1,306	2,649	6,690			
фланца	Тип 49020	1	[10 ⁻³ кгм ²]	0,093	0,234	0,643	1,306	2,649	6,690			
Pos	Тип 49010	m	[кг]	0,68	1,14	1,98	2,88	4,59	10,63			
Вес Тип 4902		m	[кг]	0,63	1,02	1,75	2,55	4,07	10,06			

CTOWN IO DIVIT	Стяжные винты и отверстия под винты				Размер					
стяжные винты и отверстия под винты			01	0	1	2	3	4		
	Кол-во, размерность	M	[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8	
Стяжные винты в конусной втулке	Стяжные винты в Размер под ключ		[MM]	7	7	7	8	10	13	
nonyenon bryme	Момент затяжки	T _A	[HM]	4	4	4	8	12	25	
Отверстия под	Кол-во, размерность	s	[MM]	8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10	
винты в нажимном фланце					Для закрепления приводного элемента необходимо использовать винты класса прочности 12.9.					


Геом. размер	ы			Раз	мер		
[MM]		01	0	1	2	3	4
Α		12	13,5	16	17	20,5	46
A ₁		7	8	9	10	12	16
a ⁵⁾		5	7	9	10	10	12
a _o		8	11	14	16	18	21
b		6	7	9	10	12	15
E		65	80	95	110	130	166
e _{h5} 6)		47	62	75	90	100	130
F		61,5	67	82	97	117	150
F ₂		70	85	100	115	135	166
f		38	44	56	70	84	100
f ₂		5	5	5	6	7	-
$f_{_4}$		50	55	70	84	100	-
минимальные	g_4	34	39	42	48	53	93
длины валов	g ₇	31	36	48	49	62	78
h		40	48	59	64	75	115
k		2,8	2,8	3,5	4,0	4,0	-
k ₁		2,8	2,8	2,8	3,5	4,0	5,3
L ⁷⁾		47	56	67	73	86	130
m		56	71	85	100	116	150

Отверстия [мм]		Размер								
Отверсти	этверстия [мм]		0	1	2	3	4			
d ^{2) 3) 4)}	d _{мин}	10	15	22	32	35	40			
u -/ -/ ·/	d _{макс}	20	25	35	45	55	65			
(10) الم	d _{Р мин} ⁸⁾	12	15	22	28	32	40			
d _P ^{2) 10)}	d _{Р макс} ⁹⁾	20	25	30	40	50	65			

- 1) Остальные Размеры для меньших и больших крутящих моментов по
- 2) В максимальном диапазоне крутящего момента обратите внимание на прочность вала при нагружении.
- Поле допуска для валов до Ø 38 _{h6}, свыше Ø 38 _{h8}
 Передаваемый крутящий момент с меньшими отверстиями по запросу
- 5) Допуск для монтажа + 0,1
- 6) Поле допуска со стороны заказчика Н7
- 7) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- Меньшие отверстия для более низких крутящих моментов по
- 9) Большие отверстия по заказу
- 10) Положение паза под шпонку относительно установочных отверстий "ѕ" в нажимном фланце неопределенное (определенное положение возможно по запросу)
- 11) Максимальная частота вращения: 250 мин-1


EAS®-compact® исполнение с двумя подшипниками с конусной втулкой

Тип 490. 1 .2 Размеры 01 до 4

EAS®-compact® исполнение с двумя подшипниками с пазом под шпонку

Тип 490._2_.2 Размеры 01 до 4

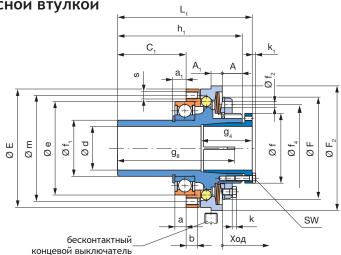
Пример: Заказной номер 1 / 490.610.2 / 25 / 60 / концевой выключатель 055.002.5 / радиальная регулировка крутящего момента

- 1) См. Технические данные, Предельные значения крутящего момента при перегрузке $M_{\rm G}$ 2) Максимальный диапазон крутящего момента возможен только для синхронной муфты, обороты < 250 мин $^{-1}$
- Шаг деления для запирания муфты (входа муфты в зацепление) по умолчанию равен 15° ; другое деление возможно в качестве опции $(45^{\circ}/60^{\circ}/90^{\circ}/120^{\circ}/180^{\circ}/...)$

Toyuuuoouuo na				Размер ¹⁾						
технические да	Технические данные			01	0	1	2	3	4	
Тип 490.52	Тип 490.52	M_{G}	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	70 - 175	120 - 300	
Предельные значения	Тип 490.62	M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	140 - 350	240 - 600	
крутящего момента	Тип 490.72	M_{G}	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	280 - 700	480 - 1200	
при перегрузке 1) 2)	Тип 490.8_ 5.2 11)	M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	350 - 875	600 - 1500	
Макс. скорость вращения n _{макс}		n _{макс}	[мин ⁻¹]	4000	3000	2500	2000	1200	800	
Ход нажимной шайбы при перегрузке [мм]			1,2	1,5	1,8	2,0	2,2	2,5		

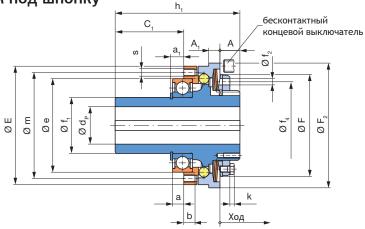
Mayauti i ilian	Моменты инерции и вес				Размер						
моменты инерции и вес			01	0	1	2	3	4			
Czonou azyru	Тип 49012	12 I [10		0,215	0,552	1,450	2,998	7,081	30,990		
Сторона втулки	Тип 49022	1	[10 ⁻³ KFM ²]	0,209	0,526	1,364	2,782	6,552	30,000		
Сторона нажимного	Тип 49012	1	[10 ⁻³ KFM ²]	0,100	0,273	0,799	1,675	3,162	8,570		
фланца	Тип 49022	1	[10 ⁻³ KFM ²]	0,100	0,273	0,799	1,675	3,162	8,570		
Bec	Тип 49012	m	[кг]	0,79	1,35	2,35	3,45	5,27	11,96		
bec	Тип 49022		[кг]	0,74	1,23	2,12	3,12	4,75	11,35		

CTOWN 10 PHUT I	LA OTROPOTUA HORI			Размер						
Стяжные винты и отверстия под винты			01	0	1	2	3	4		
Кол-во, размерность			[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8	
Стяжные винты в конусной втулке	Размер под ключ	SW	[MM]	7	7	7	8	10	13	
nonyenon bryane	Момент затяжки	T _A	[HM]	4	4	4	8	12	25	
Отверстия под	Кол-во, размерность	s	[MM]	8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10	
винты в нажимном фланце	винты в нажимном				Для закрепления приводного элемента необходимо использовать винты класса прочности 12.9.					


Геом. размер	Ы			Рази	мер		
[MM]		01	0	1	2	3	4
Α		12	13,5	16	17	20,5	46
A ₁		7	8	9	10	12	16
a ₂ ⁵⁾		14	19	25	28	28	34
a ₃		17	23	30	34	36	43
b		6	7	9	10	12	15
E		65	80	95	110	130	166
e _{h5} 6)		47	62	75	90	100	130
F		61,5	67	82	97	117	150
F ₂		70	85	100	115	135	166
f		38	44	56	70	84	100
f ₂		5	5	5	6	7	-
f ₄		50	55	70	84	100	-
минимальные	g_3	40	48	63	67	80	100
длины валов	g_4	34	39	42	48	53	93
h ₂		49	60	75	82	93	137
k		2,8	2,8	3,5	4,0	4,0	-
k ₁		2,8	2,8	2,8	3,5	4,0	5,3
L ₂ ⁷⁾		56	68	83	91	104	152
m		56	71	85	100	116	150

Отверстия [мм]		Размер								
Отверсти	отверстия [мм]		0	1	2	3	4			
d ^{2) 3) 4)}	d _{мин}	10	15	22	32	35	40			
Q 2/2/ ·/	d _{макс}	20	25	35	45	55	65			
d _P ^{2) 10)}	d _{Р мин} ⁸⁾	12	15	22	28	32	40			
α _P =//	d _{Р макс} ⁹⁾	20	25	30	40	50	65			

- 1) Остальные Размеры для меньших и больших крутящих моментов по
- 2) В максимальном диапазоне крутящего момента обратите внимание на прочность вала при нагружении.
- Поле допуска для валов до Ø 38 hs, свыше Ø 38 hs
 Передаваемый крутящий момент с меньшими отверстиями по запросу
- 5) Допуск для монтажа + 0,1 6) Поле допуска со стороны заказчика Н7
- 7) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- Меньшие отверстия для более низких крутящих моментов по
- 9) Большие отверстия по заказу
- 10) Положение паза под шпонку относительно установочных отверстий "ѕ" в нажимном фланце неопределенное (определенное положение возможно по запросу)
- 11) Максимальная частота вращения: 250 мин-1


EAS®-compact® длинная выступающая втулка с конусной втулкой

Тип 490. 1 .1 Размеры 01 до 4

EAS®-compact® длинная выступающая втулка с пазом под шпонку

Тип 490. 2 .1 Размеры 01 до 4

Пример: Заказной номер 1 / 490.610.1 / 25 / 60 / концевой выключатель 055.002.5 / радиальная регулировка крутящего момента

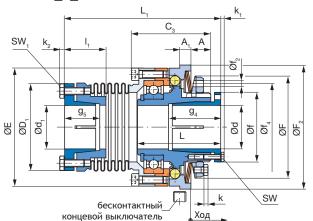
- 1) См. Технические данные, Предельные значения крутящего момента при перегрузке $M_{\rm G}$ 2) Максимальный диапазон крутящего момента возможен только для синхронной муфты, обороты < 250 мин $^{-1}$
- Шаг деления для запирания муфты (входа муфты в зацепление) по умолчанию равен 15°; другое деление возможно в качестве опции (45°/60°/90°/120°/180°/...)

Томиносино по				Размер ¹⁾						
Технические да	нные			01	0	1	2	3	4	
Пропольные	M_{G}	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	70 - 175	120 - 300		
Предельные	M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	140 - 350	240 - 600		
крутящего момента	Тип 490.71	M_{G}	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	280 - 700	480 - 1200	
при перегрузке 1) 2)	Тип 490.8_ 5.1 11)	M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	350 - 875	600 - 1500	
Макс. скорость вращения n _{макс}		[мин ⁻¹]	4000	3000	2500	2000	1200	800		
			[MM]	1,2	1,5	1,8	2,0	2,2	2,5	

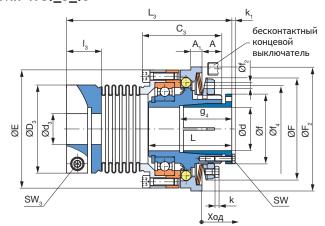
Mayanti Lunanii	444 14 DOG			Размер					
Моменты инерці	ии и вес			01	0	1	2	3	4
Тип 4901_		1	[10 ⁻³ кгм ²]	0,225	0,588	1,491	3,105	7,350	30,890
Сторона втулки Тип 490	Тип 49021	1	[10 ⁻³ кгм ²]	0,219	0,562	1,405	2,889	6,851	29,900
Сторона нажимного	Тип 49011	1	[10 ⁻³ KFM ²]	0,093	0,234	0,643	1,306	2,649	6,690
фланца	Тип 49021	1	[10 ⁻³ кгм ²]	0,093	0,234	0,643	1,306	2,649	6,690
Bec	Тип 49011	m	[кг]	0,78	1,36	2,26	3,34	5,18	11,65
	Тип 49021	m	[кг]	0,73	1,24	2,04	3,00	4,66	11,04

C=5000000000000000000000000000000000000				Размер					
Стяжные винты	и отверстия под в	зині	ы	01 0 1 2 3			4		
Кол-во, размерность			[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
Стяжные винты в конусной втулке	Размер под ключ	SW	[MM]	7	7	7	8	10	13
Korryenovi Bryvike	Момент затяжки	T _A	[HM]	4	4	4	8	12	25
Отверстия под	Кол-во, размерность	s	[MM]	8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10
винты в нажимном фланце				Для закрепления приводного элемента необходимо использовать винт прочности 12.9.					

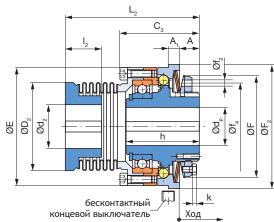
Геом. размер	Ы			Раз	мер		
[MM]		01	0	1	2	3	4
A		12	13,5	16	17	20,5	46
A ₁		7	8	9	10	12	16
a ⁵⁾		5	7	9	10	10	12
a ₁		6,5	8,75	11,5	13	14	16
b		6	7	9	10	12	15
C ₁		33	43	55	67	73	76
E		65	80	95	110	130	166
e _{h5} 6)		47	62	75	90	100	130
F		61,5	67	82	97	117	150
F ₂		70	85	100	115	135	166
f		38	44	56	70	84	100
f _{1 h6}		30	40	45	55	65	85
f ₂		5	5	5	6	7	-
f ₄		50	55	70	84	100	-
минимальные	g_4	34	39	42	48	53	93
длины валов	g ₈	56	68	89	100	117	133
h ₁		65	80	100	115	130	170
k		2,8	2,8	3,5	4,0	4,0	-
k ₁		2,8	2,8	2,8	3,5	4,0	5,3
L ₁ 7)	72	88	108	124	141	185	
m		56	71	85	100	116	150


OTDODGTI	Отверстия [мм]		Размер								
Отверсти	н [мм]	01	0	1	2	3	4				
d ^{2) 3) 4)}	d _{мин}	10	15	22	32	35	40				
u -/ -/ //	d _{макс}	20	25	35	45	55	65				
d _P ^{2) 10)}	d _{Р мин} ⁸⁾	12	15	22	28	32	40				
u _p 2/ 18/	d _{Р макс} ⁹⁾	20	25	30	40	50	65				

- Остальные Размеры для меньших и бо́льших крутящих моментов по
- В максимальном диапазоне крутящего момента обратите внимание на прочность вала при нагружении.
- Поле допуска для валов до Ø 38 _{hs}, свыше Ø 38 _{hs}
 Передаваемый крутящий момент с меньшими отверстиями по запросу
- 5) Допуск для монтажа + 0,1
- 6) Поле допуска со стороны заказчика Н7
- 7) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- 8) Меньшие отверстия для более низких крутящих моментов по запросу
- 9) Большие отверстия по заказу
- 10) Положение паза под шпонку относительно установочных отверстий "ѕ" в нажимном фланце неопределенное (определенное положение возможно по запросу)
- 11) Максимальная частота вращения: 250 мин-1


EAS®-compact® с муфтой с металлическим сильфоном

Тип 493.___.0 Размеры 01 до 3


Сторона EAS® - конусная втулка, сторона металлического сильфона - конусная втулка Тип 493._1_.0

Сторона EAS® - конусная втулка, сторона металлического сильфона - зажимная втулка Тип 493._3_.0

Сторона EAS® - втулка с пазом под шпонку, сторона металлического сильфона - втулка с пазом под шпонку Тип 493._2_.0

Заказной номер Сторона EAS® Сторона металличе-Значение устанавливаемого ского сильфона Конусная втулка Конусная втулка крутящего момента с концевым Втулка с пазом под 2 (в виде опции, Втулка с пазом под выключателем шпонку Храповая муфта ²⁾ см. стр. 51 - 53 шпонку по желанию Конусная втулка Зажимная втулка 3 Синхронная муфта Заказчика) (Опция) 4 3 0 9 Отверстие Отверстие Размеры Радиальная установка Диапазон крутящего 01 момента ¹⁾ Втулка 1 Втулка 2 крутящего момента 5 до средний Ø d^{H7} Ø d,H7 см. стр. 42 высокий 6 (Опция) $Ø d_{D}^{H7}$ Ø d₂H7 Ø d,H7

Пример: Заказной номер 1 / 493.615.0 / 22 / 25 / 60 / концевой выключатель 055.002.5 / радиальная регулировка крутящего момента

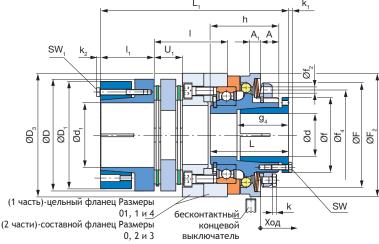
См. Технические данные, Предельные значения крутящего момента при перегрузке ${\rm M_c}$ Шаг деления для запирания муфты (входа муфты в зацепление) по умолчанию равен 15°; другое деление возможно в качестве опции $(45^{\circ}/60^{\circ}/90^{\circ}/120^{\circ}/180^{\circ}/...)$

Toyuuuosuuo na						Размер ¹⁾		
Технические да	нные			01	0	1	2	3
Крутящий момент, Тип 493.50		M_{G}	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	70 - 175
ограничивающий перегрузку 1)	Тип 493.60	M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	140 - 350
Макс. скорость вращения n _{макс} [мин ⁻¹			[мин ⁻¹]	4000	3000	2500	2000	1200
Ход нажимной шайб	ы при перегрузке		[MM]	1,2	1,5	1,8	2,0	2,2
Номинальные момен металлическим силь		T _{KN}	[HM]	50	100	200	350	600
	_ осевые		[MM]	0,4	0,6	0,8	1,0	1,0
Допустимые радиальные радиальные		ΔK _r	[MM]	0,15	0,15	0,20	0,25	0,30
смещения	угловые	ΔK _w	[°]	2	2	2	2	2

MONOUTLLINGOUN	IA IA BOC					Размер		
Моменты инерци	и и вес			01	0	1	2	3
	Тип 49310	1	[10 ⁻³ KFM ²]	0,211	0,531	1,388	2,846	6,858
Сторона втулки EAS®	Тип 49320	ı	[10 ⁻³ KFM ²]	0,205	0,505	1,302	2,630	6,359
	Тип 49330	1	[10 ⁻³ KFM ²]	0,211	0,531	1,388	2,846	6,858
Сторона	Тип 49310	1	[10 ⁻³ KFM ²]	0,269	0,753	1,764	3,602	7,789
металлического	Тип 49320	ı	[10 ⁻³ KFM ²]	0,249	0,690	1,546	3,018	6,818
сильфона	Тип 49330	ı	[10 ⁻³ KFM ²]	0,286	0,789	1,772	3,773	8,087
	Тип 49310	m	[кг]	1,09	1,88	3,08	4,60	7,19
Bec	Тип 49320	m	[кг]	1,04	1,76	2,85	4,27	6,90
	Тип 49330	m	[кг]	1,22	1,91	3,10	4,65	7,12

C-5000000						Размер		
Стяжные винты				01	0	1	2	3
	Кол-во, размерность	М	[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6
в конусной втулке, сторона EAS®	Размер под ключ	SW	[MM]	7	7	7	8	10
сторона саз	Момент затяжки	T _A	[HM]	4	4	4	8	12
в конусной втулке,	Кол-во, размерность	M ₁	[MM]	4 x M4	6 xM5	6 x M6	6 x M8	6 x M8
сторона металлического	Размер под ключ	SW ₁	[MM]	7	8	10	13	13
сильфона	Момент затяжки	T _A	[HM]	3	5	9,5	17	17
в зажимной втулке,	Кол-во, размерность	M_3	[MM]	1 x M5	1 x M6	1 x M6	1 x M8	1 x M10
сторона металлического	Размер под ключ	SW ₃	[MM]	4	5	5	6	8
сильфона	Момент затяжки	T _A	[HM]	10	18	18	43	87

Геом. размерь	ol			Размер		
[MM]		01	0	1	2	3
A		12	13,5	16	17	20,5
A ₁		7	8	9	10	12
C ₃		45	53	64	70	81
D ₁		47	60	70	81	98
D_{2}		47	60	71	81	98
$D_{_3}$		50	60	71	82	98
E		65	80	95	110	130
F		61,5	67	82	97	117
F ₂		70	85	100	115	135
f		38	44	56	70	84
f ₂		5	5	5	6	7
f ₄		50	55	70	84	100
минимальные —	g_4	34	39	42	48	53
длины валов —	g ₅	24	27	29	32	35
длины валов	l ₃	24	28	28	36	40
h		40	48	59	64	75
k		2,8	2,8	3,5	4,0	4,0
k ₁		2,8	2,8	2,8	3,5	4,0
L 4)		47	56	67	73	86
L ₁ 4)		93	109	125,5	138	164
L ₂		77,5	92	107,5	119	140,5
L ₃ 4)		102	119	133	150	177
` 1	[₁ ⁴⁾		29	33	37	45
l ₂		25	27	29	36	44

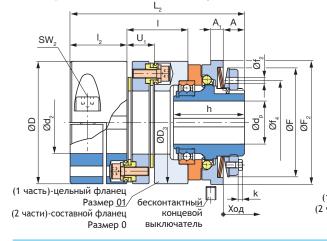

0====	C=1.46	F 1			Размер		
Отвер	стия	「ww」	01	0	1	2	3
Ø	d ^{2) 3)}	d _{мин}	10	15	22	32	35
Сторона EAS®	u -/ -/	$d_{_{Makc}}$	20	25	35	45	55
호점	d	d _{P мин}	12	15	22	28	32
Ö	d _P	d _{Р макс}	20	25	30	40	50
2	d ^{2) 3)}	d _{1 мин}	9	12	15	22	32
a CKO	d ₁ 2) 3)	d _{1 макс}	20	25	35	42	50
Сторона аллическ сильфона	d	d _{2 мин}	9	12	15	22	32
주 등 등	d ₂	d _{2 макс}	20 5)	25 ⁶⁾	35 ⁷⁾	42 8)	50
Сторона металлического сильфона	d	d _{3 мин}	12	15	25	30	35
W	d ₃	d _{3 макс}	25	32	42	45	55

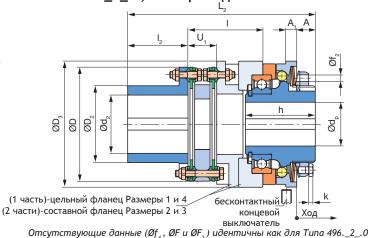
- 1) Остальные Размеры для меньших и бо́льших крутящих моментов по запросу
- Поле допуска для валов до Ø 38 _{h6}, свыше Ø 38 _{h8}
 Передаваемый крутящий момент с меньшими отверстиями по запросу
- 4) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- 5) До Ø 18 паз под шпонку согласно DIN 6885/1, свыше Ø 18 паз под шпонку согласно DIN 6885/3
- 6) До Ø 22 паз под шпонку согласно DIN 6885/1, свыше Ø 22 паз под шпонку согласно DIN 6885/3
- 7) До Ø 33 паз под шпонку согласно DIN 6885/1, свыше Ø 33 паз под шпонку согласно DIN 6885/3
- 8) До Ø 38 паз под шпонку согласно DIN 6885/1, свыше Ø 38 паз под шпонку согласно DIN 6885/3

EAS®-compact® жесткая на кручение

Сторона EAS® - конусная втулка, сторона ROBA®-DS - втулка с зажимным кольцом Тип 496._1_.0, Размеры 01 до 4

Тип 496.___.0 Размеры 01 до 4


Муфты EAS®-compact®подходят для соединения почти со всеми конструктивными элементами беззазорных соединительных муфт для валов ROBA®-DS. Представленные здесь Типы - это только подбор наиболее встречающихся, распространенных конструкций.


Последующие возможности комбинирования можно найти на стр. 43.

Мы охотно посоветуем Вам при выборе размеров и расчете параметров оптимальной муфты.

Сторона EAS® - втулка с пазом под шпонку, сторона ROBA®-DS - зажимная втулка с пазом под шпонку Тип 496._2_.0, Размеры 01 и 0

Сторона EAS® - втулка с пазом под шпонку, сторона ROBA®-DS - втулка с пазом под шпонку Тип 496._2_.0, Размеры 1 до 4

Заказной номер

4

Сторона EAS® Конусная втулка Втулка с пазом под шпонку Сторона ROBA®-DS Втулка с зажимным кольцом Зажимная втулка 4) с пазом под шпонку (Размеры 01 - 0) / втулка с пазом под шпонку (Размеры 1 - 4)

6

2

Храповая муфта 3) Синхронная муфта

0

Значение устанавливаемого крутящего момента (в виде опции, по желанию Заказчика)

с концевым выключателем см. стр. 51 - 53 (Опция)

Размеры Диапазон крутящего момента ¹⁾ 01 средний 5 до высокий 6 7 очень высокий максимальный ²⁾ 8

9

Отверстие Отверстие Втулка 2 Втулка 1 $Ø d^{H7}$ Ø d,H7 Ø d,H7 $Ø d_{D}^{H7}$

Радиальная установка крутящего момента см. стр. 42 (Опция)

Пример: Заказной номер 1 / 496.625.0 / 22 / 25 / 60 / концевой выключатель 055.002.5 / радиальная регулировка крутящего момента

- См. Технические данные, Предельные значения крутящего момента при перегрузке $\dot{M}_{_{G}}$ Максимальный диапазон крутящего
- момента возможен только для синхронной муфты, обороты < 250 мин⁻¹
- Шаг деления для запирания муфты (входа муфты в зацепление) по умолчанию равен
- 15°; другое деление возможно в качестве опции (45°/60°/90°/120°/180°/...)
- Зажимная втулка может быть поставлена также без паза под шпонку (Размеры 01-0)

Toyuuunosuuno nau						Размер ¹⁾			
Технические дан	ные			01	0	1	2	3	4
., ,	Тип 496.50	M _G	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	70 - 175	120 - 300
Крутящий момент,	' "′ IИII 4 90,0 "U	M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	140 - 350	240 - 600
ограничивающий тип 496.70	M_{G}	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	280 - 700	480 - 1200	
neper pyony	Тип 496.8_ 5.0 5)	M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	350 - 875	600 - 1500
Макс. скорость вращ	ения	n _{макс}	[мин ⁻¹]	4000	3000	2500	2000	1200	800
Ход нажимной шайбі			[MM]	1,2	1,5	1,8	2,0	2,2	2,5
Номинальные крутяц жесткой на кручение	•	T _{KN}	[HM]	100	150	300	650	1100	1600
	осевое 6)	ΔK_{a}	[MM]	0,9	1,1	0,8	1,1	1,3	1,5
Допустимые смещения	радиальные	ΔK_r	[MM]	0,20	0,20	0,20	0,25	0,30	0,30
смещения	угловые	ΔK _w	[°]	2,0	2,0	1,4	1,4	1,4	1,4

Movement	14 14 BOS			Размер					
Моменты инерции и вес				01	0	1	2	3	4
CTOROUS DEVENUE EAC®	Тип 49610 I [10 ^{.3} н		[10 ⁻³ KFM ²]	0,211	0,531	1,388	2,846	6,858	29,432
Сторона втулки EAS®	Тип 49620	1	[10 ⁻³ KFM ²]	0,205	0,505	1,302	2,630	6,359	28,443
C-anous BORA® DC	Тип 49610	-1	[10 ⁻³ KFM ²]	0,849	2,395	2,915	9,543	21,443	38,996
Сторона ROBA®-DS	Тип 49620	1	[10 ⁻³ KFM ²]	0,709	2,086	2,417	7,815	18,215	31,480
Bec	Тип 49610	m	[кг]	1,63	2,95	3,80	7,04	11,45	19,16
Dec	Тип 49620	m	[кг]	1,43	2,61	3,50	6,35	10,81	17,31

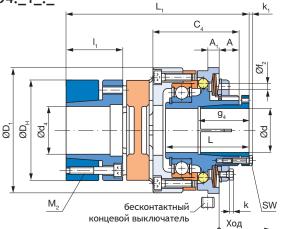
C=5,,,,,,,,,,	Стяжные винты			Размер					
Стяжные винты	01	0	1	2	3	4			
	Кол-во, размерность	M	[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
в конусной втулке, сторона EAS®	Размер под ключ	SW	[MM]	7	7	7	8	10	13
сторона саз	Момент затяжки		[HM]	4	4	4	8	12	25
в зажимном	Кол-во, размерность	M ₁	[MM]	4 x M5	6 x M5	6 x M5	6 x M5	6 x M6	6 x M8
кольце, сторона	Размер под ключ	SW ₁	[MM]	8	8	8	8	10	13
ROBA®-DS	Момент затяжки	T _A	[HM]	6	6	6	8,5	10	25
	Кол-во, размерность	M ₂	[MM]	1 x M8	1 x M8	-	-	-	-
в зажимной втулке, сторона ROBA®-DS	, , baswen unu kuma		[MM]	6	6	-	-	-	-
сторона кора -03	Момент затяжки	T _A	[HM]	33	33	-	-	-	-

Геом. размеры			Раз	мер		
[MM]	01	0	1	2	3	4
Α	12	13,5	16	17	20,5	46
A ₁	7	8	9	10	12	16
D	69	79	77	104	123	143
D ₁	68	78	77	100	115	143
D_{2}	-	-	50	70	80	100
$D_{_3}$	69	85	100	115	135	172
F	61,5	67	82	97	117	150
F ₂	70	85	100	115	135	166
f	38	44	56	70	84	100
f ₂	5	5	5	6	7	-
f ₄	50	55	70	84	100	-
мин. длины валов g_4	34	39	42	48	53	93
h	40	48	59	64	75	115
k	2,8	2,8	3,5	4,0	4,0	-
k ₁	2,8	2,8	2,8	3,5	4,0	5,3
k_2	3,5	3,5	3,5	3,5	4,0	5,3
L ⁴⁾	47	56	67	73	86	130
L ₁ 4)	105,3	132,8	141,2	175,2	208	237
$L_{\scriptscriptstyle 2}$	98,3	120,3	133,2	171,2	207	237
l	34,3	49,8	48,2	68,2	85	68
l ₁	32	37,5	40	50	55	60
l ₂	32	33,5	40	55	65	75
U ₁	15,3	15,8	21,2	26,2	34	35,2
1	.3,3	. 5,0	,_			33,2

0===		- F 1			Раз	Размер							
Отве	Отверстия [мм]		01	0	1	2	3	4					
ď	d ²⁾	d _{мин}	10	15	22	32	35	40					
EAS®- сторона	u -/	d _{макс}	20	25	35	45	55	65					
EA Top	٦	d _{P мин}	12	15	22	28	32	40					
O	d _P	d _{P макс}	20	25	30	40	50	65					
a -	ار ا	d _{1 мин}	19	25	25	40	45	55					
Д- ₋	d ₁ 3)	d _{1 макс}	38	45	45	60	70	90					
ROBA®-DS сторона	٦	d _{2 мин}	19	25	16	25	30	35					
8 0	d ₂	d _{2 макс}	35	42	32	50	55	70					

- 1) Остальные Размеры для меньших и бо́льших крутящих моментов по

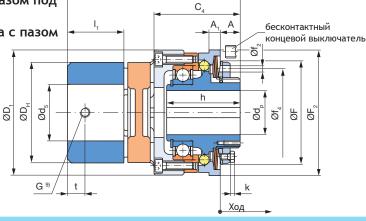
- Поле допуска для валов до Ø 38 _{h6}, свыше Ø 38 _{h8}
 Рекомендуемое поле допуска валов ₉₆
 Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- Максимальная частота вращения: 250 мин⁻¹
- Допустимы только как статические или квазистатические значения.


EAS®-compact® упругая беззазорная

Тип 494.___._ Размеры 01 до 4

Сторона EAS® - конусная втулка, сторона ROBA®-ES - зажимная втулка

Тип 494._0_._ Α ØD, ØΒ ğ ğ ğ 8 SW концевой Ход выключатель


Сторона EAS® - конусная втулка, сторона ROBA®-ES - втулка с зажимным кольцом Тип 494._1_._

Отсутствующие размеры (Øf, Øf $_4$, ØF и ØF $_2$) идентичны как для Tuna 494._0_._

Сторона EAS® - втулка с пазом под сторона ROBA®-ES - втулка с пазом

под шпонку Тип 494._2_._

Заказной номер

Сторона EAS® Конусная втулка Конусная втулка Втулка с пазом

под шпонку

Сторона ROBA®-ES Зажимная втулка

Втулка с зажимным кольцом Втулка с пазом под шпонку

0 Храповая муфта ²⁾ Синхронная муфта

3начение устанавливаемого крутящего момента (в виде опции, по желанию Заказчика)

с концевым выключателем См. стр. 51 - 53 (Опция)

9 4

Размеры 01 до

Диапазон крутящего момента ¹⁾ средний

высокий очень высокий Упругая муфта 92 Шор А 98 Шор А 64 Шор D

0

1

2

5

6 7

3 4

Отверстие Отверстие Втулка 1 Ø d^{H7} $Ø d_n^{H7}$

Втулка 2 Ø d,F7 $Ød_{A}^{H7}$ Ø d₅ H7

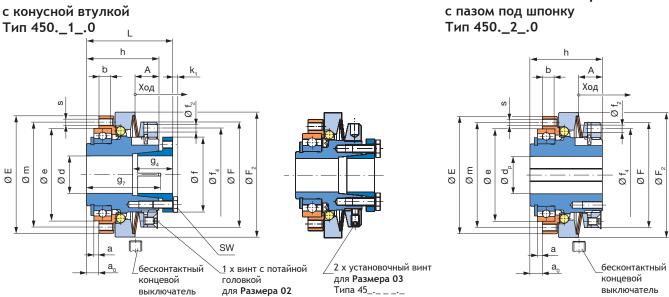
Радиальная установка крутящего момента см. стр. 42 (Опция)

Пример: Заказной номер 1 / 494.615.3 / 22 / 25 / 60 / концевой выключатель 055.002.5 / радиальная регулировка крутящего момента

- 1) См. Технические данные, Предельные значения крутящего момента при перегрузке M_{G}
- Шаг деления для запирания муфты (входа муфты в зацепление) по умолчанию равен 15°; другое деление возможно в качестве опции (45°/60°/90°/120°/180°/ ...)
- Передаваемые крутящие моменты упругой муфты " $T_{\rm KN}$ " зависят от таких факторов, как например, температурный коэффициент,
- коэффициент жесткости на кручение и т.д., смотрите также выбор муфты ROBA®-ES в Каталоге К.940.V_ _ или соответственно обратитесь на наш завод. Кроме того, передаваемые крутящие моменты упругой муфты зависят от диаметра отверстия d, или соотв. d_4 , см. также Таблицу 1 на стр. 50.
- Поле допуска для валов до Ø 38 $_{\mathrm{h6}}$, свыше Ø 38 _{h8}
- 5) Передаваемый крутящий момент с
- меньшими отверстиями по запросу Меньшие отверстия для меньших крутящих
- моментов по запросу
- Большие отверстия по заказу
- Поле допуска для валов до Ø 40
- Паз под шпонку смещен на 180° по отношению к отверстию "G"
- 10) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).

Toyuuuosuuo n							Размер			
технические до	Технические данные						1	2	3	4
Крутящий момент,	Тип 494.5		M _G	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	70 - 175	120 - 300
ограничивающий	Тип 494.6		M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	140 - 350	240 - 600
перегрузку 3)	Тип 494.7		M_{G}	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	280 - 700	480 - 1200
Макс. скорость вра	щения		n _{макс}	[мин ⁻¹]	4000	3000	2500	2000	1200	800
Ход нажимной шай	бы при перегі	рузке		[MM]	1,2	1,5	1,8	2,0	2,2	2,5
Номинальные и ма	ксимальные	92 Шор А	T _{KN} /T _{макс}	[HM]	35 / 70	95 / 190	190 / 380	265 / 530	310 / 620	900 / 1800
крутящие моменты	l ³⁾	98 Шор А	T _{KN} /T _{MAKC}	[HM]	60 / 120	160 / 320	325 / 650	450 / 900	525 / 1050	1040 / 2080
эластичной муфты		64 Шор D	T _{KN} /T _{MAKC}	[HM]	75 / 150	200 / 400	405 / 810	560 / 1120	655 / 1310	1250 / 2500
	осевые		ΔK_{a}	[MM]	1,4	1,5	1,8	2,0	2,1	2,6
		92 Шор А	ΔK _r	[MM]	0,14	0,15	0,17	0,19	0,21	0,25
//	радиальные	98 Шор А	ΔK _r	[MM]	0,10	0,11	0,12	0,14	0,16	0,18
Допустимые смещения		64 Шор D		[MM]	0,07	0,08	0,09	0,10	0,11	0,13
смещения	угловые	92 Шор А	ΔK _w	[°]	1,0	1,0	1,0	1,0	1,0	1,0
		98 Шор А	ΔK _w	[°]	0,9	0,9	0,9	0,9	0,9	0,9
		64 Шор D	ΔK _w	[°]	0,8	0,8	0,8	0,8	0,8	0,8

Manager	14 14 DOG			Размер						
Моменты инерции и вес			01	0	1	2	3	4		
	Тип 4940	-1	[10 ⁻³ KFM ²]	0,211	0,531	1,388	2,846	6,858	29,432	
Сторона втулки EAS®	Тип 4941	Т	[10 ⁻³ KFM ²]	0,211	0,531	1,388	2,846	6,858	29,432	
	Тип 4942		[10 ⁻³ KFM ²]	0,205	0,505	1,302	2,630	6,359	28,443	
	Тип 4940	-1	[10 ⁻³ KFM ²]	0,322	0,700	1,846	7,627	14,530	48,570	
Сторона ROBA®-ES	Тип 4941	Т	[10 ⁻³ KFM ²]	0,381	0,833	2,280	7,475	14,167	43,038	
	Тип 4942	-1	[10 ⁻³ KFM ²]	0,324	0,696	1,847	7,613	14,520	49,106	
	Тип 4940	m	[кг]	1,06	1,58	2,69	6,31	9,23	21,53	
Bec	Тип 4941	m	[кг]	1,18	1,74	3,05	6,20	8,91	21,44	
	Тип 4942	m	[кг]	1,02	2,09	2,70	6,23	9,56	21,09	


CTOWN IO DIANT				Размер					
Стяжные винты				01	0	1	2	3	4
	Кол-во, размерность	M	[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
в конусной втулке, сторона EAS®	Размер под ключ	SW	[MM]	7	7	7	8	10	13
Сторона САЗ	Момент затяжки	T _A	[HM]	4	4	4	8	12	25
	Кол-во, размерность	M ₁	[MM]	1 x M6	1 x M8	1 x M8	1 x M10	1 x M12	1 x M14
в зажимной втулке, сторона ROBA®-ES	Размер под ключ	SW ₁	[MM]	5	6	6	8	10	12
Сторона КОВА - 13	Момент затяжки	T _A	[HM]	10,5	25	25	70	120	200
в зажимном	Кол-во, размерность	M ₂	[MM]	4 x M5	8 x M5	8 x M6	4 x M8	4 x M8	4 x M12
кольце, сторона	Размер под ключ	SW ₂	[MM]	4	4	5	6	6	10
ROBA®-ES	Момент затяжки	T _A	[HM]	6	6	10,5	25	30	90

Геом. размеры			Раз	мер		
[MM]	01	0	1	2	3	4
A	12	13,5	16	17	20,5	46
A ₁	7	8	9	10	12	16
$C_{_4}$	47	56,5	69	74	87	130
D ₁	70	85	100	115	135	175
D _H	55	65	80	95	105	135
F	61,5	67	82	97	117	150
F ₂	70	85	100	115	135	166
f	38	44	56	70	84	100
f ₂	5	5	5	6	7	-
f,	50	55	70	84	100	-
G 9)	M5	M6	M8	M8	M8	M10
мин. длины валов g ₄	34	39	42	48	53	93
h	40	48	59	64	75	115
k	2,8	2,8	3,5	4,0	4,0	-
k ₁	2,8	2,8	2,8	3,5	4,0	5,3
L 10)	47	56	67	73	86	130
L ₁ ¹⁰⁾	102	119,5	146	159	182	255
L ₂	95	111,5	138	150	171	240
l,	30	35	45	50	56	75
t	10	15	15	20	25	20
t ₁	12	13,5	20	20	21	27,5

0-5		· []			Раз	мер		
OIBE	Отверстия [мм]		01	0	1	2	3	4
מ	d ^{4) 5)}	d _{мин}	10	15	22	32	35	40
EAS®- сторона	u ",-,	$d_{_{Makc}}$	20	25	35	45	55	65
EA P	d 6)7)	d _{P мин}	12	15	22	28	32	40
Ü	d _P ^{6) 7)}	d _{P Make}	20	25	30	40	50	65
	d ₃ 3)	d _{3 мин}	15	19	20	28	35	45
S-	u ₃ -/	d _{3 макс}	28	35	45	50	55	80
유	d ₄ 3)	d _{4 мин}	15	19	20	28	35 8)	45
ROBA®-ES сторона	u ₄ -,	d _{4 макс}	28	38	45	50	60 8)	75
80	d ₅ 3)	d _{5 мин}	8	10	12	14	20	38
	u ₅ -/	d₅ макс	28	38	45	55	60	80

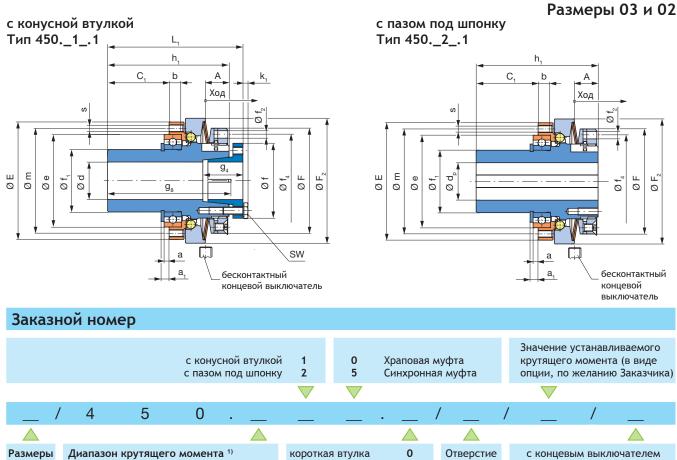
EAS®-NC короткая втулка

Тип 450.___.0 Размеры 03 и 02

Типа 45_._ _ _._

EAS®-NC длинная выступающая втулка

Тип 450.___.1 Размеры 03 и 02


см. стр. 51 - 53

(Опция)

втулки

 $Ø d^{H7}$

 $Ød_n^{H7}$

Пример: Заказной номер 02 / 450.610.0 / 15 / 8 / концевой выключатель 055.002.5

5

6 7 длинная

втулка

выступающая

03

02

средний

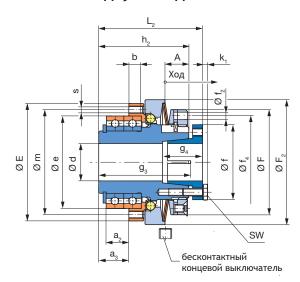
высокий

очень высокий

Townsia come				Размер ¹⁾			
Технические данные				03	02		
Крутящий момент,	Тип 450.5	M_{G}	[HM]	0,65 - 1,30	2 - 5		
ограничивающий	Тип 450.6	M_{G}	[HM]	1,30 - 2,60	5 - 10		
перегрузку ¹⁾	Тип 450.7	M_{G}	[HM]	2,00 - 3,80	6 - 15		
Макс. скорость вращ	ения	n _{макс}	[мин ⁻¹]	4000	4000		
			[MM]	0,8	1,0		

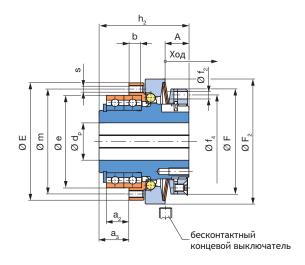
Mayauzu				Pasa	мер
Моменты инерци	и и вес			03	02
	Тип 45010	1	[10 ⁻³ KFM ²]	0,027	0,054
CTOPOUS DEVENU	Тип 45020	1	[10 ⁻³ KFM ²]	0,025	0,051
Сторона втулки	Тип 45011	1	[10 ⁻³ KFM ²]	0,028	0,058
	Тип 45021	1	[10 ⁻³ KFM ²]	0,026	0,055
Сторона нажимного фланца	Тип 450	1	[10-3 кгм²]	0,008	0,018
	Тип 45010	m	[кг]	0,18	0,28
Bec	Тип 45020	m	[кг]	0,17	0,26
Dec	Тип 45011	m	[кг]	0,20	0,32
	Тип 45021	m	[кг]	0,19	0,30

CTOWN IS BUILTING	u otnonctus non n			Размер		
Стяжные винты и отверстия под винты			ol	03	02	
	Кол-во, размерность	M	[MM]	4 x M3	4 x M3	
Стяжные винты в конусной втулке	Размер под ключ	SW	[MM]	5,5	5,5	
B Rollychon Brynne	Момент затяжки	T _A	[HM]	1	1	
Отверстия под винты в нажимном фланце	Кол-во, размерность	s	[MM]	6 x M3	6 x M3	


Геом. размер	Ы	Раз	мер	
[MM]		03	02	
Α		7,2	9,5	
a ²⁾		2	2	
a _o		4,5	5,0	
a ₁		3,0	3,2	
b		5	5	
C ₁		20,5	25	
E		40	47	
e _{h5} 4)		30	37	
F		37	42	
F ₂		45	50	
f		26	30	
f _{1 h6}		17	25	
f ₂		-	3	
f ₄		-	37	
	g_4	11,5	15,5	
минимальные длины валов	g ₇	25,5	30,5	
	g ₈	41,5	50,5	
h		24	29	
h ₁		40	49	
k ₁		2	2	
L ⁶⁾	L ⁶⁾		34,5	
L ₁ ⁶⁾		44,5	54,5	
m		35	42	

Отверстия [мм]		Размер				
		03	02			
	d _{мин}	6	8			
d	d _{макс}	12	15			
al 3)	d _{P мин}	6	8			
d _P 3)	d _{P MAKC}	11	16 ⁵⁾			

- 1) Остальные Размеры для меньших и бо́льших крутящих моментов по запросу
- 2) Допуск для монтажа + 0,1
- Положение паза под шпонку относительно установочных отверстий "" в нажимном фланце неопределенное (определенное положение возможно по запросу)
- 4) Поле допуска со стороны заказчика Н7
- До Ø 14 паз под шпонку согласно DIN 6885/1, свыше Ø 14 паз под шпонку согласно DIN 6885/3
- 6) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).


EAS®-NC исполнение с двумя подшипниками с конусной втулкой


Тип 450._1_.2 Размеры 03 и 02

EAS®-NC исполнение с двумя подшипниками с пазом под шпонку

Тип 450._2_.2 Размеры 03 и 02

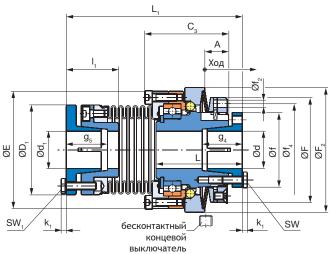
Пример: Заказной номер 02 / 450.610.2 / 15 / 8 / концевой выключатель 055.002.5

Технические данные				Размер ¹⁾			
				03	02		
Крутящий момент,	$M_{\rm G}$	[HM]	0,65 - 1,30	2 - 5			
ограничивающий Тип 450	Тип 450.62	M_{G}	[HM]	1,30 - 2,60	5 - 10		
	Тип 450.72	M_{G}	[HM]	2,00 - 3,80	6 - 15		
Макс. скорость вращения		n _{макс}	[мин ⁻¹]	4000	4000		
Ход нажимной шайбы при перегрузке			[MM]	0,8	1,0		

Моменты инерции и вес				Размер			
				03	02		
C	Тип 45012	1	[10 ⁻³ KFM ²]	0,028	0,058		
Сторона втулки	Тип 45022	1	[10 ⁻³ KFM ²]	0,026	0,055		
Сторона нажимного фланца	Тип 4502	1	[10-3 кгм²]	0,008	0,018		
Bec	Тип 45012	m	[кг]	0,13	0,31		
	Тип 45022	m	[кг]	0,18	0,29		

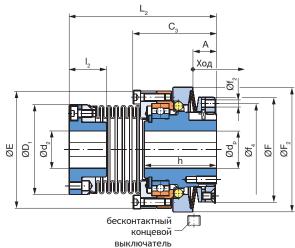
Стяжные винты и отверстия под винты				Размер			
			ы	03	02		
	Кол-во, размерность	M	[MM]	4 x M3	4 x M3		
Стяжные винты в конусной втулке	Размер под ключ	SW	[MM]	5,5	5,5		
B nonyenon Bryme	Момент затяжки	T _A	[HM]	1	1		
Отверстия под винты в нажимном фланце	Кол-во, размерность	s	[MM]	6 x M3	6 x M3		

Геом. размеры		Раз	мер	
[MM]		03	02	
Α		7,2	9,5	
a ₂ 2)		9	9	
a ₃		11,5	12	
b		5	5	
E		40	47	
e _{h5} 4)		30	37	
F		37	42	
F ₂		45	50	
f		26	30	
f ₂		-	3	
$f_{_4}$		-	37	
минимальные	g ₃	32,5	37,5	
длины валов	g ₄	11,5	15,5	
h ₂		31	36	
k ₁		2	2	
L ₂ ⁶⁾		35,5	41,5	
m		35	42	


Отверстия [мм]		Размер				
		02				
d _{мин}	6	8				
d _{макс}	12	15				
d _{P MUH}	6	8				
d _{Р макс}	11	16 ⁵⁾				
	d _{мин} d _{макс} d _{Р мин}	ММ] 03 d _{мин} 6 d _{макс} 12 d _{Р мин} 6				

- 1) Остальные Размеры для меньших и бо́льших крутящих моментов по
- 2) Допуск для монтажа + 0,1
- Положение паза под шпонку относительно установочных отверстий "" в нажимном фланце неопределенное (определенное положение возможно по запросу)
- 4) Поле допуска со стороны заказчика Н7
- 5) До Ø 14 паз под шпонку согласно DIN 6885/1, свыше Ø 14 паз под шпонку согласно DIN 6885/3
- 6) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).

EAS®-NC с муфтой с металлическим сильфоном


Тип 453.___.0 Размеры 03 и 02

Сторона EAS $^{\circ}$ - конусная втулка, сторона металлического сильфона - конусная втулка Тип 453._1_.0

Сторона EAS $^{\circ}$ - втулка с пазом под шпонку, сторона металлического сильфона - втулка с пазом под шпонку

Тип 453._2_.0

Пример: Заказной номер 02 / 453.615.0 / 15 / 15 / 8 / концевой выключатель 055.002.5

Технические данные				Размер ¹⁾			
				03	02		
Крутящий момент,	Тип 453.50	M_{G}	[HM]	0,65 - 1,30	2 - 5		
ограничивающий	Тип 453.60	M_{G}	[HM]	1,30 - 2,60	5 - 10		
перегрузку 1)	Тип 453.70	M_{G}	[HM]	2,00 - 3,80	6 - 15		
Макс, скорость враш	Макс. скорость вращения n _{макс} [м		[мин ⁻¹]	4000	4000		
Ход нажимной шайб	ы при перегрузке		[MM]	0,8	1,0		
Номинальные момен металлическим силь		T _{KN}	[HM]	12	25		
_	осевые	ΔK_{a}	[MM]	0,2	0,3		
Допустимые смещения	радиальные	ΔK_r	[MM]	0,1	0,1		
	угловые	ΔK _w	[°]	2	2		

Marrana				Размер				
Моменты инерции и вес				03	02			
Сторона втулки	Тип 45310	-1	[10 ⁻³ KFM ²]	0,027	0,054			
	Тип 45320	1	[10 ⁻³ кгм ²]	0,025	0,051			
Сторона	Тип 45310	1	[10 ⁻³ кгм ²]	0,027	0,063			
металлического сильфона	Тип 45320	1	[10 ⁻³ кгм ²]	0,025	0,057			
Pos	Тип 45310	m	[кг]	0,27	0,45			
Bec	Тип 45320	m	[кг]	0,24	0,39			

Стяжные винты				Размер			
СТЯЖНЫЕ ВИНТЫ				03	02		
,	Кол-во, размерность	М	[MM]	4 x M3	4 x M3		
в конусной втулке, сторона EAS®	Размер под ключ	SW	[MM]	5,5	5,5		
cropona Erio	Момент затяжки	T _A	[HM]	1,3	1,3		
в конусной втулке,	Кол-во, размерность	M ₁	[MM]	4 x M3	4 x M3		
металлического	Размер под ключ	SW ₁	[MM]	5,5	5,5		
	Момент затяжки	T _A	[HM]	1,3	1,3		

Геом. размеры		Раз	мер
[MM]		03	02
Α		7,2	9,5
C ₃		28	33,5
D ₁		30	36
E		40	47
F		37	42
F ₂		45	50
f		26	30
f ₂		-	3
f ₄		-	37
минимальные	g_4	11,5	15,5
длины валов	g ₅	12,5	16
h		24	29
k ₁		2	2
L ³⁾		28,5	34,5
L ₁ 3)		58,5	70,5
L ₂		49,3	59
[3)		14	21
l ₂		9,5	15

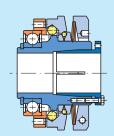
0	Отверстия [мм]		Размер			
Отвер			03	02		
es.	А	d _{мин}	6	8		
Сторона ЕАЅ®-	d	d _{макс}	12	15		
EA EA	-1	d	d _{P мин}	6	8	
J	d _P	d _{P Makc}	11	16 ²⁾		
2000	a	d _{1 мин}	6	8		
Сторона эллическ элльфонг	она ческо рона д	d _{1 макс}	12	15		
Стор алли силь	Сторона металлическо сильфона д	d _{2 мин}	6	8		
мет	d ₂	d _{2 макс}	11	16 ²⁾		

- 1) Остальные Размеры для меньших и бо́льших крутящих моментов по запросу
- До Ø 14 паз под шпонку согласно DIN 6885/1, свыше Ø 14 паз под шпонку согласно DIN 6885/3
- 3) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).

Принцип работы

При превышении установленного предельного значения крутящего момента муфта расцепляется. Крутящий момент сразу падает. Встроенный концевой выключатель воспринимает движение расцепления и отключает привод. Сигнал концевого выключателя также может использоваться для других функций управления.

EAS®-compact® рассоединяющие муфты полностью отсоединяют входную (сторону привода) и выходную стороны и остаются в этом состоянии, пока они не будут намеренно зацеплены обратно вручную или при помощи устройства.


EAS®-compact® рассоединяющие муфты во время работы передают крутящий момент беззазорно и обеспечивают в случае перегрузки свободный выбег компонентов привода.

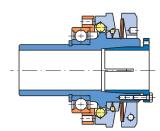
EAS®-compact® рассоединяющие муфты Типов 49_.5_4._, 49_.6_4._ и 49_.7_4._ могут быть поставлены также и в исполнении АТЕХ согласно Директиве 94/9 EC (ATEX 95).

Обзор конструктивных компоновок рассоединяющих муфт EAS®-compact®

EAS®-compact® рассоединяющая короткая втулка

Крутящий момент: 5 до 3000 Нм

Размеры 01 до 3 Тип 490.__ 4.0


Размеры 4 и 5

с конусной втулкой с втулкой с пазом под шпонку

примерно по центру подшипника

Тип 490._14._ Тип 490._24._

EAS®-compact® рассоединяющая длинная выступающая втулка

Крутящий момент: 5 до 1000 Нм

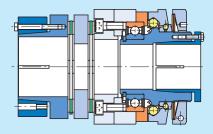
как исполнение с 2-мя подшипниками Тип 490.__ 4.2

Размеры 01 до 3 Тип 490.__ 4.1

- Фланцевая муфта для очень широких приводных
- или для элементов с очень маленьким диаметром В качестве опоры для приводного элемента подходят

• Фланцевая муфта для прямого монтажа приводных

элементов с результирующей радиальной силой


шарикоподшипники, игольчатые подшипники или подшипники скольжения.

с конусной втулкой Тип 490._14.1 с втулкой с пазом под шпонку Тип 490._24.1

Стр. 30

Стр. 28

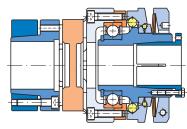
EAS®-compact® рассоединяющая жесткая передача момента

Крутящий момент: 5 до 3000 Нм

Размеры 01 до 3 Тип 496.__ 4.0

Размеры 4 и 5 как исполнение с 2-мя подшипниками Тип 496.__ 4.2

- Исполнение для двух валов с жесткой, прочной дисковой муфтой с пакетом ламеллей
- Компенсация осевого, радиального и углового смещений валов
- Высокая жесткость на кручение


Исполнения втулок:

<u>сторона EAS</u>®/сторона жесткая на кручение конусная втулка/втулка с зажимным кольцом Тип 496._14._ втулка с пазом под шпонку/зажимная втулка

Тип 496, 24.0 втулка с пазом под шпонку/втулка с пазом под шпонку Тип 496._24._

Стр. 32

EAS®-compact® рассоединяющая упругая беззазорная

Крутящий момент: 5 до 1500 Нм

Размеры 01 до 3 Тип 494.__ 4._

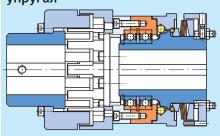
Размер 4 как исполнение с 2-мя

подшипниками

Тип 494._ _ 4._

- Исполнение для двух валов с упругой беззазорной муфтой
- Компенсация осевого, радиального и углового смещений валов
- Высокая способность демпфирования

Исполнения втулок:


сторона EAS®/упругая сторона

конусная втулка/зажимная втулка Тип 494._04._ конусная втулка/втулка с зажимным кольцом Тип 494._14.

втулка с пазом под шпонку/втулка с пазом под шпонку Тип 494._24._

Стр. 36

EAS®-compact® рассоединяющая упругая

Крутящий момент: 240 до 3000 Нм

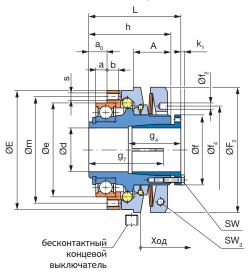
Размер 5 как исполнение с 2-мя подшипниками

Тип 494.__ 4.2

- Исполнение для двух валов с упругой муфтой
- Компенсация осевого, радиального и углового смещений валов

Исполнения втулок:

сторона EAS®/упругая сторона

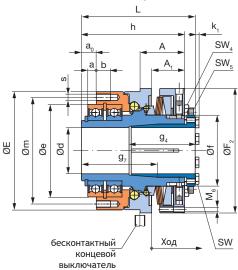

втулка с пазом под шпонку/втулка с пазом под шпонку Тип 494._24.2

конусная втулка/втулка с пазом под шпонку Тип 494. 34.2

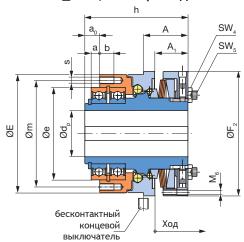
Стр. 40


EAS®-compact® рассоединяющая короткая втулка с конусной втулкой

Тип 490._14.0, Размеры 01 до 3


EAS®-compact® рассоединяющая короткая втулка с пазом под шпонку

Тип 490._24.0, Размеры 01 до 3


Тип 490._14._ Размеры 01 до 5

Тип 490._14.2, Размеры 4 до 5

Тип 490._24._ Размеры 01 до 5

Тип 490._24.2, Размеры 4 до 5

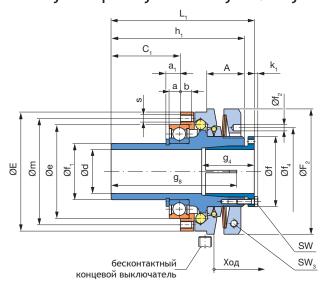
Пример: Заказной номер 1 / 490.614.0 / 25 / 60 / концевой выключатель 055.002.5

¹⁾ См. Технические данные, Предельные значения крутящего момента при перегрузке М_с

Технические данные			Размер ¹⁾							
			01	0	1	2	3	4	5	
Тип 490.5_4 Крутящий момент, Тип 490.6_4	M_{G}	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	80 - 200	120 - 300	240 - 600	
	Тип 490.6_4	M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	160 - 400	240 - 600	480 -1200
ограничивающий перегрузку ¹⁾	Тип 490.7_4	M_{G}	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	320 - 800	480 - 1200	960 - 2400
1 17 7	Тип 490.8_4	M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	400 - 1000	600 - 1500	1200 - 3000
Макс. скорость вращения		n _{макс}	[мин ⁻¹]	8000	7000	6000	5000	4000	3500	3000
Ход нажимной шайбы при перегрузке			[MM]	2,0	2,6	3,2	3,8	4,5	5,5	6,5

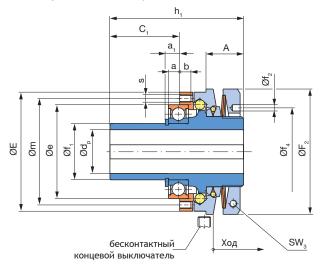
Mayauti i iliananiili	4.14.000			Размер						
Моменты инерции	и и вес			01	0	1	2	3	4	5
CTOROUS BTUTIES	Тип 49014	-1	[10 ⁻³ KFM ²]	0,383	0,943	2,279	4,421	10,396	39,730	120,834
Сторона втулки	Тип 49024		[10 ⁻³ KFM ²]	0,377	0,917	2,193	4,205	9,867	37,215	112,399
Сторона нажимного	иного Тип 49014 I [10 ⁻³ кг <i>м</i>		[10 ⁻³ KFM ²]	0,093	0,234	0,643	1,306	2,649	19,950	65,760
фланца	Тип 49024	- 1	[10 ⁻³ KFM ²]	0,093	0,234	0,643	1,306	2,649	19,950	65,760
Вес Тип 49014 Тип 49024		m	[кг]	0,92	1,55	2,58	3,70	5,83	17,10	34,70
		m	[кг]	0,87	1,43	2,35	3,37	5,31	16,50	34,30

Property of the party of							Размер			
Винты и отверстия	под винты			01	0	1	2	3	4	5
Кол-во, размерно		M	[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8	8 x M10
Стяжные винты в конусной втулке	Размер под ключ	SW	[MM]	7	7	7	8	10	13	16
Konyenovi Bryzike	Момент затяжки	T _A	[HM]	4	4	4	8	12	25	71
Предохранительный	Кол-во, размерность	M ₃	[MM]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6	-	-
винт в регулировочной	Размер под ключ	SW ₃	[MM]	3	3	4	4	5	-	-
гайке Размеры 01 - 3	Момент затяжки	T _A	[HM]	3	5	9	9	15	-	-
Винты/резьба в	Размер под ключ	SW_4	[MM]	-	-	-	-	-	18	18
регулировочной гайке	Размер под ключ	SW ₅	[MM]	-	-	-	-	-	6	6
Размеры 4 - 5	Кол-во, размерность	<u> </u>		-	-	-	-	-	3 x M8	3 x M8
0	Кол-во, размерность	s	[MM]	8 x M4	8 x M5	8 x M6	8 x M6 *	8 x M8 *	8 x M10	8 x M12
Отверстия под винты в нажимном фланце	гы в			* Для закр	* Для закрепления приводного элемента необходимо использовать винты н прочности 12.9.					нты класса


Геом. размер	Ы			F	азме	р		
[MM]		01	0	1	2	3	4	5
Α		24	28	30	34	40	62,5	80
A_1		-	-	-	-	-	46,5	60
a ²⁾		5	7	9	10	10	12	13
a _o		8	11	14	16	18	21	23
b		6	7	9	10	12	20	20
E		65	80	95	110	130	166	215
e _{h5} 3)		47	62	75	90	100	130	160
F ₂		70	85	100	115	135	175	225
f		38	44	56	70	84	100	134
f ₂		5	5	5	6	7	-	-
f ₄		50	55	70	84	100	-	-
минимальные	g_4	34	39	42	48	53	93	118
длины валов	g_7	36	43	54	57	69	110	130
h		45	55	65	72	82	145	175
k ₁		2,8	2,8	2,8	3,5	4,0	5,3	6,4
L ⁴⁾		52	63	73	81	93	160	193
m		56	71	85	100	116	150	185

0======	Отверстия [мм]		Размер								
Отверсти	н [мм]	01	0	1	2	3	4	5			
d ^{5) 6)}	d _{мин}	10	15	22	32	35	40	45			
a 3, 3,	d _{макс}	20	25	35	45	55	65	85			
	d _{Р мин} 7)	12	15	22	28	32	40	45			
d _p	d _{Р макс} ⁸⁾	20	25	30	40	50	65	80			

- 1) Остальные Размеры для меньших и бо́льших крутящих моментов по
- 2) Допуск для монтажа + 0,13) Поле допуска со стороны заказчика Н7
- 4) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- 5) Поле допуска для валов до Ø 38 _{h6}, свыше Ø 38 _{h8} 6) Передаваемый крутящий момент с меньшими отверстиями по
- Меньшие отверстия для более низких крутящих моментов по
- 8) Большие отверстия по заказу


EAS®-compact® рассоединяющая длинная выступающая втулка с конусной втулкой

Тип 490._14.1 Размеры 01 до 3

EAS®-compact® рассоединяющая длинная выступающая втулка с пазом под шпонку

Тип 490._24.1 Размеры 01 до 3

Пример: Заказной номер 1 / 490.614.1 / 25 / 60 / концевой выключатель 055.002.5

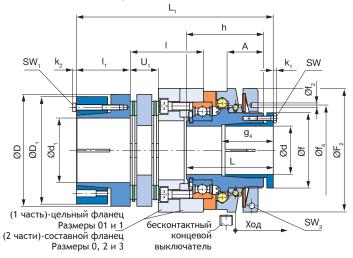
¹⁾ См. Технические данные, Предельные значения крутящего момента при перегрузке ${\rm M}_{\rm G}$

Toyuuuosuuo na				Размер ¹⁾						
Технические дан	ные			01	0	1	2	3		
	Тип 490.5_4.1	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	80 - 200			
Крутящий момент,	Тип 490.6_4.1	M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	160 - 400		
ограничивающий перегрузку 1)	Тип 490.7_4.1	M_{G}	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	320 - 800		
, ,	Тип 490.8_4.1	M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	400 - 1000		
Макс. скорость вращения		n _{макс}	[мин ⁻¹]	8000	7000	6000	5000	4000		
Ход нажимной шайбы при перегрузке [мл		[MM]	2,0	2,6	3,2	3,8	4,5			

Manautillunanu	U4 14 BOS			Размер						
Моменты инерци	и и вес			01	0	1	2	3		
CTOPOUS DEVENUE	Тип 49014.1	1	[10 ⁻³ KFM ²]	0,397	1,000	2,382	4,680	10,888		
Сторона втулки	Тип 49024.1	-1	[10 ⁻³ KFM ²]	0,391	0,974	2,296	4,464	10,389		
Сторона нажимного	Тип 49014.1	-1	[10 ⁻³ KFM ²]	0,093	0,234	0,643	1,306	2,649		
фланца	Тип 49024.1	1	[10 ⁻³ KFM ²]	0,093	0,234	0,643	1,306	2,649		
Pos	Тип 49014.1	Гип 49014.1 m		1,02	1,77	2,86	4,16	6,42		
Вес		m	[кг]	0,97	1,65	2,64	3,82	5,90		

PLANTIN A OTROPOTA	10 F DIALET I					Размер			
Винты и отверсти	и под винты			01	0	1	2	3	
Кол-во, размерность			[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	
Стяжные винты в конусной втулке	Размер под ключ	SW	[MM]	7	7	7	8	10	
	Момент затяжки	T _A	[HM]	4	4	4	8	12	
Предохранительный	Кол-во, размерность	M ₃	[MM]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6	
винт в регулировочной	Размер под ключ	SW ₃	[MM]	3	3	4	4	5	
гайке	Момент затяжки	T _A	[HM]	3	5	9	9	15	
Отверстия под	Кол-во, размерность	s	[MM]	8 x M4	8 x M5	8 x M6	8 x M6 *	8 x M8 *	
винты в нажимном фланце				* Для закрепления приводного элемента необходимо использовать винты класса прочности 12.9.					

Геом. размер	Ы			Размер		
[MM]		01	0	1	2	3
Α		24	28	30	34	40
a ²⁾		5	7	9	10	10
a ₁		6,5	8,75	11,5	13	14
b		6	7	9	10	12
C ₁		33	43	55	67	73
E		65	80	95	110	130
e _{h5} 3)		47	62	75	90	100
F ₂		70	85	100	115	135
f		38	44	56	70	84
f _{1 h6}		30	40	45	55	65
f ₂		5	5	5	6	7
f ₄		50	55	70	84	100
минимальные	g_4	34	39	42	48	53
длины валов	g ₈	61	75	95	108	124
h ₁		70	87	106	123	137
k ₁		2,8	2,8	2,8	3,5	4,0
L ₁ 4)		77	95	114	132	148
m		56	71	85	100	116

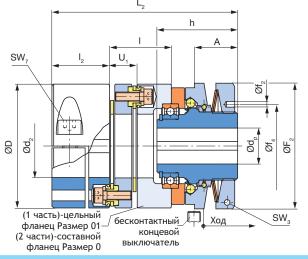

OTRODOTIA	Отверстия [мм]		Размер							
Отверсти	H [MM]	01	0	1	2	3				
d ^{5) 6)}	d _{мин}	10	15	22	32	35				
u -/ -/	d _{макс}	20	25	35	45	55				
А	d _{Р мин} ⁷⁾	12	15	22	28	32				
a _p	d _{Р макс} ⁸⁾	20	25	30	40	50				

- 1) Остальные Размеры для меньших и бо́льших крутящих моментов по
- 2) Допуск для монтажа + 0,1 3) Поле допуска со стороны заказчика Н7
- 4) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- 5) Поле допуска для валов до Ø 38 _{h6}, свыше Ø 38 _{h8}
 6) Передаваемый крутящий момент с меньшими отверстиями по запросу
- Меньшие отверстия для более низких крутящих моментов по запросу
- 8) Большие отверстия по заказу

EAS®-compact® рассоединяющая жесткая на кручение

Тип 496.__4.0 Размеры 01 до 3

Сторона EAS® - конусная втулка, сторона ROBA®-DS - втулка с зажимным кольцом Тип 496._14.0, Размеры 01 до 3


Муфты EAS®-сотраст® подходят для соединения почти со всеми конструктивными элементами беззазорных соединительных муфт для валов ROBA®-DS. Представленные здесь Типы - это только подбор наиболее встречающихся, распространенных конструкций.

Последующие возможности комбинирования можно найти на стр. 43.

Мы охотно посоветуем Вам при выборе размеров и расчете параметров Вашей оптимальной муфты.

Сторона EAS $^{\circ}$ - втулка с пазом под шпонку, сторона ROBA $^{\circ}$ -DS - зажимная втулка с пазом под шпонку Тип 496._24.0, Размеры 01 и 0

Сторона EAS $^{\circ}$ - втулка с пазом под шпонку, сторона ROBA $^{\circ}$ -DS - втулка с пазом под шпонку Тип 496._24.0, Размеры 1 до 3

Заказной номер

 Сторона EAS®
 Сторона ROBA®-DS

 Конусная втулка
 Втулка с зажимным кольцом
 1

 Втулка с пазом
 Зажимная втулка с пазом под шпонку (Размеры 01-0) / втулка с пазом под шпонку (Размеры 1-3)
 2

9

4 Рассоединяющая муфта

Значение устанавливаемого крутящего момента (в виде опции, по желанию Заказчика)

/

Размеры

01

до

4

Диапазон крутящего момента ¹⁾ средний высокий очень высокий максимальный

Отверстие Втулка 1 Ø d ^{н7}

Ø d.H7

0

Отверстие Втулка 2 $\emptyset d_1^{H7}$ $\emptyset d_2^{H7}$

с концевым выключателем см. стр. 51 (Опция)

Пример: Заказной номер 1 / 496.614.0 / 30 / 30 / 60 / концевой выключатель 055.002.5

5

6

6

Town wood was a sum						Размер		
Технические данн	ые			01	0	1	2	3
Тип 496.5_4.0		M_{G}	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	80 - 200
Предельные значения	Тип 496.6_4.0	M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	160 - 400
крутящего момента при перегрузке	Тип 496.7_4.0	M _G	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	320 - 800
	Тип 496.8_4.0	M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	400 - 1000
Макс. скорость вращен	ия	n _{макс}	[мин ⁻¹]	8000	7000	6000	5000	4000
Ход нажимной шайбы п	ри перегрузке		[MM]	2,0	2,6	3,2	3,8	4,5
Номинальные крутящие жесткой на кручение м		T _{KN}	[Нм]	100	150	300	650	1100
	осевое 1)	ΔK _a	[MM]	0,9	1,1	0,8	1,1	1,3
Допустимые смещения	радиальные 🏻 🗠 🗠	ΔK _r	[MM]	0,20	0,20	0,20	0,25	0,30
смещения	угловые		[°]	2,0	2,0	1,4	1,4	1,4

Mayauzuuwanuwa	4.44.000			Размер						
Моменты инерции	и и вес			01	0	1	2	3		
С-2222 БАС® ТИП 49614.0 I [10 ⁻³			[10 ⁻³ KFM ²]	0,383	0,943	2,279	4,421	10,396		
Сторона втулки EAS® Тип 49624		- 1	[10 ⁻³ KFM ²]	0,377	0,917	2,193	4,205	9,867		
Consum BORA® DC	Тип 49614.0	-1	[10 ⁻³ KFM ²]	0,894	2,395	2,915	9,543	21,443		
Сторона ROBA®-DS	Тип 49624.0	-1	[10 ⁻³ KFM ²]	0,709	2,086	2,417	7,815	18,215		
Bec	Тип 49614.0	m	[кг]	1,81	3,34	4,34	7,81	12,75		
	Тип 49624.0	m	[кг]	1,65	3,07	4,01	7,12	14,94		

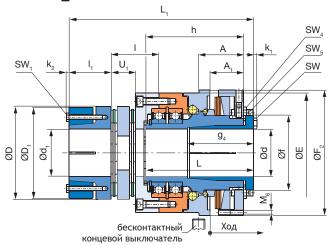
Винты						Размер		
ринты				01	0	1	2	3
Кол-во, размерно		M	[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6
в конусной втулке, сторона EAS®	Размер под ключ	SW	[MM]	7	7	7	8	10
сторона вдз	Момент затяжки	T _A	[HM]	4	4	4	8	12
Предохранительный	Кол-во, размерность	M_3	[MM]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6
винт в	Размер под ключ	SW ₃	[MM]	3	3	4	4	5
регулировочной гайке	Момент затяжки	T _A	[HM]	3	5	9	9	15
	Кол-во, размерность	M ₁	[MM]	4 x M5	6 x M5	6 x M5	6 x M5	6 x M6
в зажимном кольце, сторона ROBA®-DS	Размер под ключ	SW ₁	[MM]	8	8	8	8	10
сторона корд рэ	Момент затяжки	T _A	[HM]	6	6	6	8,5	10
	Кол-во, размерность	M ₇	[MM]	1 x M8	1 x M8	-	-	-
з зажимной втулке, торона ROBA®-DS	SW ₇	[MM]	6	6	-	-	-	
сторона кора -рз	Момент затяжки	T _A	[HM]	33	33	-	-	-

Геом. размеры	Размер						
[MM]	01	0	1	2	3		
Α	24	28	30	34	40		
D	69	79	77	104	123		
D ₁	68	78	77	100	115		
D_{2}	-	-	50	70	80		
F ₂	70	85	100	115	135		
f	38	44	56	70	84		
f ₂	5	5	5	6	7		
f ₄	50	55	70	84	100		
мин. длины валов $g_{_4}$	34	39	42	48	53		
h	45	55	65	72	82		
k ₁	2,8	2,8	2,8	3,5	4,0		
k ₂	3,5	3,5	3,5	3,5	4,0		
L ²⁾	52	63	73	81	93		
L ₁ ²⁾	110,3	139,3	147,1	183,2	215		
L ₂	103,3	127,3	139,2	179,2	214		
l	34,3	49,8	48,2	68,2	85		
l ₁	32	37,5	40	50	55		
l ₂	32	33,5	40	55	65		
U ₁	15,3	15,8	21,2	26,2	34		

Отверстия [мм]		Размер					
		01	0	1	2	3	
Ø	d ³⁾	d _{мин}	10	15	22	32	35
S®-	u -/	d _{макс}	20	25	35	45	55
EA Top	CTOPOHA CTOPOHA	d _{P MUH}	12	15	22	28	32
O		d _{P макс}	20	25	30	40	50
- a	d 4)	d _{1 мин}	19	25	25	40	45
®-D,	d ₁ 4)	d _{1 макс}	38	45	45	60	70
ROBA®-DS сторона	TOP T	d _{2 мин}	19 ⁵⁾	25 5)	16	25	30
500	d ₂	d _{2 макс}	35 ⁵⁾	42 ⁵⁾	32	50	55

- Допустимы только как статические или квазистатические значения.
 Размеры в состоянии с несжатыми пружинами (в состоянии со
- сжатыми пружинами короче).

 3) Поле допуска для валов до Ø 38 _{h6}, свыше Ø 38 _{h8}

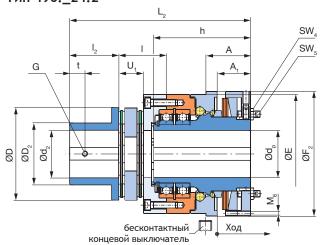

 4) Рекомендуемое поле допуска валов _{g6}

 5) Рекомендуемое поле допуска валов _{k6}

EAS®-compact® рассоединяющая жесткая на кручение

Тип 496.__4.2 Размеры 4 и 5

Сторона EAS $^{\circ}$ - конусная втулка, Сторона ROBA $^{\circ}$ -DS - втулка с зажимным кольцом Тип 496._14.2



Муфты EAS $^\circ$ -compact $^\circ$ подходят для соединения почти со всеми конструктивными элементами беззазорных соединительных муфт для валов ROBA $^\circ$ -DS. Представленные здесь Типы - это только подбор наиболее встречающихся, распространенных конструкций.

Последующие возможности комбинирования можно найти на стр. 43.

Мы охотно посоветуем Вам при выборе размеров и расчете параметров Вашей оптимальной муфты.

Сторона EAS $^{\circ}$ - втулка с пазом под шпонку, Сторона ROBA $^{\circ}$ -DS - втулка с пазом под шпонку Тип 496._24.2

Пример: Заказной номер 5 / 496.714.2 / 70 / 70 / 1500 / концевой выключатель 055.002.5

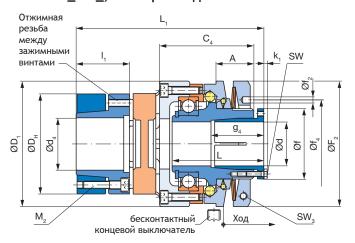
Технические данные				Размер		
				4	5	
Предельные Тип 496.5_4.2		M _G	[HM]	120 - 300	240 - 600	
значения крутящего	Тип 496.6_4.2	M_{G}	[HM]	240 - 600	480 - 1200	
момента при	Тип 496.7_4.2	M _G	[HM]	480 - 1200	960 - 2400	
перегрузке Ти	Тип 496.8_4.2	M_{G}	[HM]	600 - 1500	1200 - 3000	
Макс. скорость вращения		n _{макс}	[мин ⁻¹]	3500	3000	
Ход нажимной шайбы	Ход нажимной шайбы при перегрузке		[MM]	5,5	6,5	
Номинальные крутящие моменты жесткой на кручение муфты		T _{KN}	[HM]	1600	3500	
_ осевое 1)		ΔK _a	[MM]	1,5	1,2	
Допустимые смещения	радиальные	ΔK	[MM]	0,30	0,25	
смещения	угловые	ΔK _w	[°]	1,4	1,0	

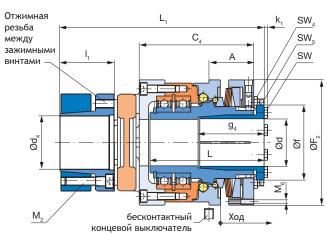
Моменты инерции и вес				Размер		
				4	5	
CTOROUS DEVENUE EAC®	Тип 49614.2	-1	[10 ⁻³ KFM ²]	39,730	120,834	
Сторона втулки EAS®	Тип 49624.2	1	[10 ⁻³ KFM ²]	37,215	112,399	
Сторона ROBA®-DS	Тип 49614.2	-1	[10 ⁻³ KFM ²]	32,310	147,080	
Сторона коваиз	Тип 49624.2	-1	[10 ⁻³ KFM ²]	26,050	128,580	
Вес	Тип 49614.2	m	[кг]	27,30	52,18	
	Тип 49624.2	m	[кг]	26,10	48,60	

Винты				Размер		
				4	5	
	Кол-во, размерность	M	[MM]	8 x M8	8 x M10	
в конусной втулке, сторона EAS®	Размер под ключ	SW	[MM]	13	16	
сторона вдз	Момент затяжки		[HM]	25	71	
в зажимном	Кол-во, размерность	M ₁	[MM]	6 x M8	8 x M8	
кольце, сторона	Размер под ключ	SW ₁	[MM]	13	13	
ROBA®-DS Moment	Момент затяжки	T _A	[HM]	25	35	
Штифты/резьба в	Размер под ключ	SW ₄	[MM]	18	18	
регулировочной	Размер под ключ	SW ₅	[MM]	6	6	
гайке	Кол-во, размерность	M ₆	[MM]	3 x M8	3 x M8	

Геом. размеры	Размер			
[MM]	4	5		
A	62,5	80		
A ₁	46,5	60		
D	143	167		
D ₁	143	164		
D_{2}	100	121		
E	166	215		
F ₂	175	225		
f	100	134		
G	2)	M12		
мин. длины валов $g_{_4}$	93	118		
h	145	175		
k ₁	5,3	6,4		
k ₂	5,3	5,3		
L ³⁾	160	193		
L ₁ 3)	267	331		
L ₂	267	328		
l	68	86		
l ₁	60	75		
l ₂	75	90		
t	21	25		
U ₁	35,2	44,4		

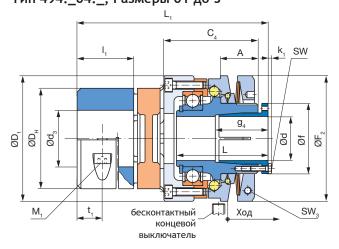
Oznanszus [ww]		- []	Размер		
Отве	Отверстия [мм]		4	5	
ď	d 4)	d _{мин}	40	45	
EAS® -	u "	d _{макс}	65	85	
EA:	o a,	d	d _{P мин}	40	45
O		d _{P Make}	65	80	
S a	d ₁ 5)	d _{1 мин}	55	50	
®-D,	u ₁ -/	d _{1 макс}	90	85	
ВА	ROBA®-DS CTOPOHa q ¹ ₂₎	$d_{_{2{\scriptscriptstyle MMH}}}$	35	45	
S o		d _{2 макс}	70	90	

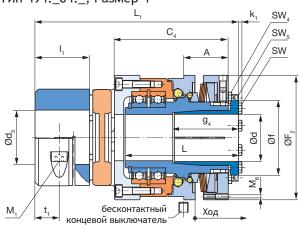

- Допустимы только как статические или квазистатические значения.
 До Ø 44 M8, свыше Ø 44 M10
 Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- 4) Поле допуска для валов _{h8} 5) Рекомендуемое поле допуска валов _{g6}


EAS®-compact® рассоединяющая упругая беззазорная

Тип 494._ _4._

Сторона EAS® - конусная втулка, сторона ROBA®-ES - втулка с зажимным кольцом Тип 494._14._, Размеры 01 до 3 Тип 494._14._, Размер 4


Размеры 01 до **4**


Отсутствующие данные (\emptyset D, и \emptyset D $_{\rm H}$) идентичны как для Размеров 01 до 3, Tun 494.__14.__

Сторона EAS® - конусная втулка, сторона ROBA®-ES - зажимная втулка Тип 494._04._, Размеры 01 до 3 Тип 494._04._, Размер 4

9

4

Отсутствующие данные (ØD, и ØD $_{\rm H}$) идентичны как для Размеров 01 до 3, Tun 494._04._

Заказной номер

Сторона EAS® Сторона ROBA®-ES
Конусная втулка Зажимная втулка Втулка с зажимным кольцом 1 4 Рассоединяющая муфта желанию Заказчика)

Отверстие Размеры Диапазон крутящего момента 1) Упругая муфта Отверстие с концевым 92 Шор А 3 01 средний Втулка 1 Втулка 2 выключателем до высокий 98 Шор А см. стр. 51 Ø d^{H7} Ø d,F7 64 Шор D очень высокий (Опция) Ø d.H7 максимальный

Пример: Заказной номер 1 / 494.614.3 / 22 / 25 / 60 / концевой выключатель 055.002.5

- 1) См. Технические данные, Предельные значения крутящего момента при перегрузке ${\rm M_{_G}}$
- Передаваемые крутящие моменты упругой муфты "Т_{к₁}" зависят от таких факторов, как, например, температурный коэффициент, коэффициент жесткости
- на кручение и т.д., смотрите также выбор муфты ROBA®-ES в Каталоге К.940.V_ _ или соответственно обратитесь на наш завод. Кроме того, передаваемые крутящие моменты упругой муфты зависят от диаметра отверстия ${\rm d_3}$ или соотв. ${\rm d_4}$, см.также Таблицу 1 на стр. 50.
- 3) Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).
- 4) Поле допуска для валов до Ø 38 $_{\rm h6}$, свыше Ø 38 $_{\rm h8}$
- 5) Передаваемый крутящий момент с меньшими отверстиями по запросу
- 6) Поле допуска для валов до Ø 40 ₁₆

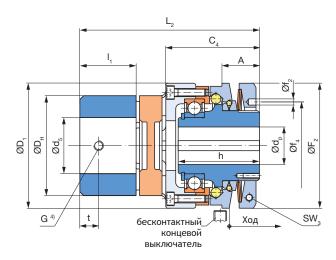
Toyuuuoouu	0 1131111110						Pas	мер		
Технически	е данные				01	0	1	2	3	4
Предельные	тип 494.6 4.		M_{G}	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	80 - 200	120 - 300
значения			M _G	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	160 - 400	240 - 600
крутящего момента ²⁾	Тип 494.7_4	·_	M_{G}	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	320 - 800	480 - 1200
при перегрузке	тип 494.8_4		M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	400 - 1000	600 - 1500
Макс. скорость			n _{макс}	[мин ⁻¹]	8000	7000	6000	5000	4000	3500
Ход нажимной шайбы при перегрузке			[MM]	2,0	2,6	3,2	3,8	4,5	5,5	
Номинальные і	1	92 Шор А	T _{KN} /T _{K MAKC}	[HM]	35 / 70	95 / 190	190 / 380	265 / 530	310 / 620	900 / 1800
максимальные			T _{KN} /T _{K MAKC}		60 / 120	160 / 320	325 / 650	450 / 900	525 / 1050	1040 / 2080
моменты ²⁾ упр	угой муфты	64 Шор D	T _{KN} /T _{K MAKC}	[HM]	75 / 150	200 / 400	405 / 810	560 / 1120	655 / 1310	1250 / 2500
	осевые		ΔK_{a}	[MM]	1,4	1,5	1,8	2,0	2,1	2,6
		92 Шор А	ΔK_r	[MM]	0,14	0,15	0,17	0,19	0,21	0,25
	радиальные	98 Шор А	ΔK _r	[MM]	0,10	0,11	0,12	0,14	0,16	0,18
	Допустимые		ΔK_r	[MM]	0,07	0,08	0,09	0,10	0,11	0,13
смещения угловые		92 Шор А	ΔK	[°]	1,0	1,0	1,0	1,0	1,0	1,0
	угловые	98 Шор А	ΔK _w	[°]	0,9	0,9	0,9	0,9	0,9	0,9
		64 Шор D	ΔK _w	[°]	0,8	0,8	0,8	0,8	0,8	0,8

Manager	Ломенты инерции и вес					Размер							
моменты инерци	и и вес			01	0	1	2	3	4				
Сторона втулки EAS®	Тип 4944	-1	[10 ⁻³ KFM ²]	0,383	0,943	2,279	4,421	10,396	39,730				
Сторона ROBA®-ES	С ВОВАЛ БС ТИП 49414		[10 ⁻³ KFM ²]	0,378	0,832	2,277	7,25	14,167	61,674				
Сторона коваез	Тип 49404	-1	[10 ⁻³ KFM ²]	0,320	0,691	1,843	7,40	14,529	62,369				
Тип 49414.		m	[кг]	1,38	2,16	3,64	6,69	10,11	27,61				
Bec	Тип 49404	m	[кг]	1,27	1,98	3,25	6,81	10,42	27,67				

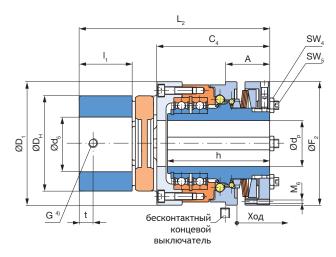
D						Раз	мер		
Винты				01	0	1	2	3	4
	Кол-во, размерность	M	[MM]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
в конусной втулке, сторона EAS®	Размер под ключ	SW	[MM]	7	7	7	8	10	13
сторона ваз-	Момент затяжки	T _A	[HM]	4	4	4	8	12	25
	Кол-во, размерность	M ₂	[MM]	4 x M5	8 x M5	8 x M6	4 x M8	4 x M8	4 x M12
в зажимном кольце, сторона ROBA®-ES	Размер под ключ	SW ₂	[MM]	4	4	5	6	8	10
сторона кова - Ез	Момент затяжки	T _A	[HM]	6	6	10,5	25	30	120
	Кол-во, размерность	M ₁	[MM]	1 x M6	1 x M8	1 x M8	1 x M10	1 x M12	1 x M14
в зажимной втулке, сторона ROBA®-ES	Размер под ключ	SW ₁	[MM]	5	6	6	8	10	12
сторона кова - Ез	Момент затяжки	T	[HM]	10	25	25	70	120	200
Предохранительный	Кол-во, размерность	M ₃	[MM]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6	-
винт в регулировочной	Размер под ключ	SW ₃	[MM]	3	3	4	4	5	-
гайке Размеры 01 - 3	Момент затяжки	T	[HM]	3	5	9	9	15	-
Штифты/резьба в	Размер под ключ	SW ₄	[MM]	-	-	-	-	-	18
регулировочной гайке	Размер под ключ	SW ₅	[MM]	-	-	-	-	-	6
Размер 4	Кол-во, размерность	M ₆	[MM]	-	-	-	-	-	3 x M8

Геом. размеры			Раз	мер		
[MM]	01	0	1	2	3	4
A	24	28	30	34	40	62,5
$C_{_{4}}$	52	63,5	75	82	94	160
D ₁	70	85	100	115	135	175
D _H	55	65	80	95	105	135
F ₂	70	85	100	115	135	175
f	38	44	56	70	84	100
f,	5	5	5	6	7	-
f_4	50	55	70	84	100	-
мин. длины валов g ₄	34	39	42	48	53	93
k ₁	2,8	2,8	2,8	3,5	4,0	5,3
L ³⁾	52	63	73	81	93	160
L ₁ 3)	107	126,5	152	167	189	270
Ĺ	30	35	45	50	56	75
t ₁	12	13,5	20	20	21	27,5

0.	DCTI	. []			Раз	мер		
	рстиз	[MM]	01	0	1	2	3	4
ЕАЅ® - сторона	d ^{4) 5)}	d _{мин}	10	15	22	32	35	40
СТОР	u //	d _{макс}	20	25	35	45	55	65
,	d 2)	d _{3 мин}	15	19	20	28	35	45
®-E9	d ₃ ²⁾	d _{3 макс}	28	35	45	50	55	80
ROBA®-ES сторона	d 2)	d _{4 мин}	15	19	20	28	35 ⁶⁾	45
28 0	d ₄ ²⁾	d _{4 макс}	28	38	45	50	60 6)	75


Оставляем за собой право на изменение конструкции и геометрических размеров

EAS®-compact® рассоединяющая упругая беззазорная


Тип 494. 24.

Размеры 01 до 4

Сторона EAS $^{\circ}$ - втулка с пазом под шпонку, сторона ROBA $^{\circ}$ -ES - втулка с пазом под шпонку Тип 494._24._, Размеры 01 до 3

Тип 494._24._, Размер 4

Пример: Заказной номер 1 / 494.624.3 / 22 / 25 / 60 / концевой выключатель 055.002.5

¹⁾ См. Технические данные, Предельные значения крутящего момента при перегрузке ${\rm M_c}$

T							Размер			
Технически	е данные				01	0	1	2	3	4
Предельные			M_{G}	[HM]	5 - 12,5	10 - 25	20 - 50	40 - 100	80 - 200	120 - 300
значения			M_{G}	[HM]	10 - 25	20 - 50	40 - 100	80 - 200	160 - 400	240 - 600
			M_{G}	[HM]	20 - 50	40 - 100	80 - 200	160 - 400	320 - 800	480 - 1200
перегрузке	Тип 494.824	·_	M_{G}	[HM]	25 - 62,5	50 - 125	100 - 250	200 - 500	400 - 1000	600 - 1500
Макс. скорость	вращения		n _{макс}	[мин-1]	8000	7000	6000	5000	4000	3500
Ход нажимной шайбы при перегрузке [м			[MM]	2,0	2,6	3,2	3,8	4,5	5,5	
Номинальные		92 Шор А	$T_{\rm KN}/T_{\rm K~Makc}$	[HM]	35 / 70	95 / 190	190 / 380	265 / 530	310 / 620	900 / 1800
максимальные моменты 1)	крутящие	98 Шор А	$T_{KN}/T_{K\ Makc}$	[HM]	60 / 120	160 / 320	325 / 650	450 / 900	525 / 1050	1040 / 2080
упругой муфть	ol .	64 Шор D	T _{KN} /T _{K MAKC}	[HM]	75 / 150	200 / 400	405 / 810	560 / 1120	655 / 1310	1250 / 2500
	осевые		ΔK_{a}	[MM]	1,4	1,5	1,8	2,0	2,1	2,6
		92 Шор А	ΔK _r	[MM]	0,14	0,15	0,17	0,19	0,21	0,25
	радиальные	98 Шор А	ΔK _r	[MM]	0,10	0,11	0,12	0,14	0,16	0,18
Допустимые смещения	64 Шор D		ΔK _r	[MM]	0,07	0,08	0,09	0,10	0,11	0,13
угловые		92 Шор А	ΔK _w	[°]	1,0	1,0	1,0	1,0	1,0	1,0
	угловые	98 Шор А	ΔK _w	[°]	0,9	0,9	0,9	0,9	0,9	0,9
		64 Шор D	ΔK _w	[°]	0,8	0,8	0,8	0,8	0,8	0,8

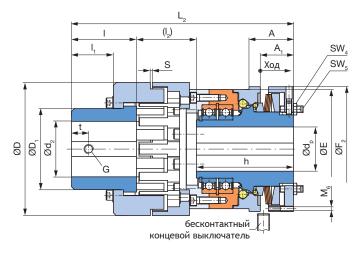
MOMOUTH LANDRING IA BOS			Размер							
Моменты инерции и вес			01	0	1	2	3	4		
Сторона втулки EAS® Тип 49424	0,377	0,917	2,193	4,205	9,867	37,215				
Сторона ROBA®-ES Тип 49424	0,321	0,695	1,844	7,39	14,519	62,873				
Вес Тип 49424	m	[кг]	1,23	1,92	3,26	6,73	10,28	27,19		

D				Размер						
Винты				01	0	1	2	3	4	
Предохранительный Кол-во, размерность		M ₃	[MM]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6	-	
винт в регулировочной	Размер под ключ	SW ₃	[MM]	3	3	4	4	5	-	
гайке Размеры 01 - 3	Момент затяжки	T _A	[HM]	3	5	9	9	15	-	
Штифты/резьба	рты/резьба Размер под ключ		[MM]	-	-	-	-	-	18	
в регулировочной гайке Размер 4	Размер под ключ	SW ₅	[MM]	-	-	-	-	-	6	
	Кол-во, размерность	M ₆	[MM]	-	-	-	-	-	3 x M8	

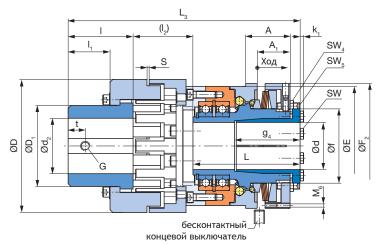
Геом. размеры			Раз	мер		
[MM]	01	0	1	2	3	4
A	24	28	30	34	40	62,5
C ₄	52	63,5	75	82	94	160
D ₁	70	85	100	115	135	175
D _H	55	65	80	95	105	135
F ₂	70	85	100	115	135	175
f ₂	5	5	5	6	7	-
f ₄	50	55	70	84	100	-
G ⁴⁾	M5	M6	M8	M8	M8	M10
h	45	55	65	72	82	145
L ₂	100	118,5	144	158	178	270
l ₁	30	35	45	50	56	75
t	10	15	15	20	25	20

0====		F 1		Размер								
Отвер	кигэ	[мм] вит		0	1	2	3	4				
EAS®- сторона	a	d _{Р мин} ²⁾	12	15	22	28	32	40				
СТОР	d _p	d _{Р макс} ³⁾	20	25	30	40	50	65				
®-ES -	d	d _{5 мин}	8	10	12	14	20	38				
ROBA®-ES сторона	d ₅	d _{5 макс}	28	38	45	55	60	80				

Оставляем за собой право на изменение конструкции и геометрических размеров


- Передаваемые крутящие моменты упругой муфты "Тки" зависят от таких факторов, как, например, температурный коэффициент, коэффициент жесткости на кручение и т.д., смотрите также выбор муфты ROBA®-ES в Каталоге К.940.V_ _ или соответственно обратитесь на наш завод. 2) Меньшие отверстия для меньших крутящих моментов по запросу

- 3) Бо́льшие отверстия по заказу4) Паз под шпонку смещен на 180° к "G"


EAS®-compact® рассоединяющая упругая

Тип 494.__4.2 Размер 5

С двух сторон втулки с пазом под шпонку Тип 494._24.2

Сторона EAS® - конусная втулка, сторона упругой муфты - втулка с пазом под шпонку Тип 494._34.2

Пример: Заказной номер 5 / 494.624.2 / 60 / 60 / 800 / концевой выключатель 055.002.5

¹⁾ См. Технические данные, Предельные значения крутящего момента при перегрузке М_с

Технические д	TAUULIA			Размер
T CATIFFACEIVIC A	данные			5
Предельные	Тип 494.5_4.2	M _G	[HM]	240 - 600
значения	Тип 494.6_4.2	M _G	[HM]	480 - 1200
крутящего момента	Тип 494.7_4.2	M _G	[HM]	960 - 2400
при перегрузке	Тип 494.8_4.2	M _G	[HM]	1200 - 3000
Макс, скорость вр			[мин ⁻¹]	3000
Ход нажимной ша	йбы при перегрузке		[MM]	6,5
	Тип 494.5_4.2	T _{KN}	[HM]	2400
Крутящий момент	Тип 494.6_4.2	T _{KN}	[HM]	2400
упругой муфты	Тип 494.7_4.2	T _{KN}	[HM]	2400
туфты	Тип 494.8_4.2	T _{KN}	[HM]	3700
_	осевые	ΔK _a	[MM]	2,0
Допустимые отклонения ²⁾	радиальные	ΔK_r	[MM]	0,3
отклонения /	угловые	ΔK _w	[°]	0,07

Movement	4.000			Размер
Моменты инерции і	и вес			5
CTOROUS REVENUE FACO	Тип 494 24.2	- 1	[10 ⁻³ KFM ²]	112,399
Сторона втулки EAS®	Тип 494 34.2	- 1	[10 ⁻³ кгм ²]	120,834
Сторона упругой муфты	Тип 4944.2	- 1	[10 ⁻³ кгм ²]	420,870
Pos	Тип 494 24.2	m	[кг]	69,780
Bec	Тип 494 34.2	m	[кг]	70,150

Винты				Размер
DAILLIDI				5
	Кол-во, размерность	М	[MM]	8 x M10
в конусной втулке, сторона EAS®	Размер под ключ	SW	[MM]	16
сторона вяз	Момент затяжки	T _A	[HM]	71
Штифты/резьба	Размер под ключ	SW_4	[MM]	18
в регулировочной	Размер под ключ	SW ₅	[MM]	6
гайке	Кол-во, размерность	M ₆	[MM]	3 x M8

Геом. размеры	Размер
[MM]	5
Α	80
A ₁	60
D	240
D ₁	146
E	215
F ₂	225
f	134
G	M12
$g_{_4}$	118
h	175
k ₁	6,4
L 1)	193
L ₂	400
L ₃ 1)	418
l	117
l ₁	75,5
l ₂	108
S	4
t	35

Отверстия [мм]		. []	Размер
Отвер	лверстия [мм]		5
_	d	d _{P мин}	45
EAS® - торона	d _p	d _{P MAKC}	80
EAS®-	d	d MNH	45
	d	d _{макс}	85
гая-	d	d _{2 мин}	60
упругая- сторона	Y de proposition de la proposition della proposi	d _{2 макс}	100

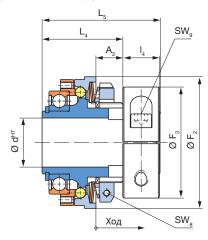
Оставляем за собой право на изменение конструкции и геометрических размеров

¹⁾ Размеры в состоянии с несжатыми пружинами (в состоянии со сжатыми пружинами короче).

²⁾ Значения относятся к 1500 мин⁻¹.

EAS®-compact® Опции

EAS®-compact® с регулировочной гайкой для радиальной регулировки крутящего момента


EAS®-compact® может быть снабжена регулировочной гайкой для радиальной установки крутящего момента, когда муфта при стесненных монтажных размерах не доступна в осевом направлении.

В этом варианте градуировка для считывания и регулировки крутящего момента исполняется на наружном диаметре, видимом радиально.

Геом. размеры	Размер							
[MM]	01	0	1	2	3			
A_2	12	13,5	16	17	20,5			
F,	59	73	88	104	125			
F ₂	70	85	100	115	135			
Х	6	7	7	8	10			
х	3	4	4	4,5	4			

EAS®-compact® с зажимным кольцом

Муфты EAS®-compact® со втулкой с зажимным кольцом исключительно быстро и легко устанавливаются на вал. Разрезное зажимное кольцо зажимается всего одним винтом. Благодаря оснащению муфты регулировочной гайкой для радиальной регулировки крутящего момента, предельный крутящий момент для перегрузки может быть изменен даже в уже установленной муфте.

Геом. размеры	Размер							
[MM]	01	0	1	2	3			
A_3	15,5	19	20,5	23,5	26			
F ₂	70	85	100	115	135			
F ₃	60	72	84	97	115			
L ₄	43,5	53,5	63,5	70,5	80,5			
L ₅	65	77	90	103	117			
l ₄	18	22	26	32	36			

Отверстия [мм]		Размер							
Отверстия	[ww]	01	0	1	2	3			
d ^{H7 1)}	d MNH	10	15	22	32	35			
a,	d _{макс}	25	32	40	45	55			

 Передаваемые крутящие моменты, зависящие от размеров отверстия, см. Таблицу 1.

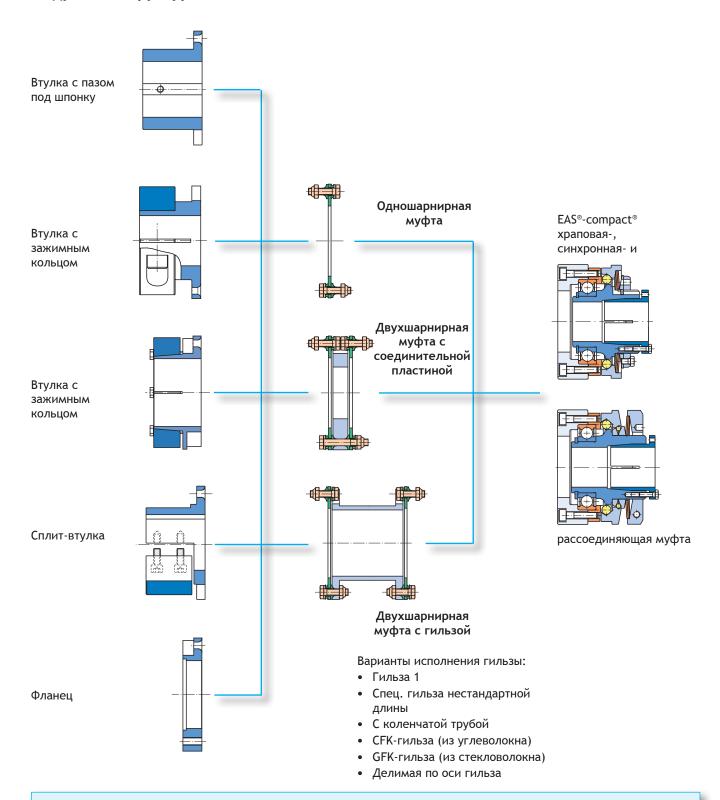

Передаваемые фрикционно крутящие моменты $T_{_{R}}$ [Hм] муфты EAS $^{\circ}$ -compact $^{\circ}$ с зажимным кольцом									
		Размер							
Отверстие	01	0	1	2	3				
Ø 10	44	-	-	-	-				
Ø 12	52	-	-	-	-				
Ø 14	61	-	-	-	-				
Ø 16	69	101	-	-	-				
Ø 18	78	113	-	-	-				
Ø 20	87	126	-	-	-				
Ø 22	96	138	199	-	-				
Ø 25	109	168	226	327	-				
Ø 28	-	201	253	366	523				
Ø 30	-	216	290	420	561				
Ø 32	-	230	325	470	598				
Ø 35	-	-	355	515	700				
Ø 38	-	-	386	559	798				
Ø 40	-	-	406	588	840				
Ø 45	-	-	-	661	945				
Ø 50	-	-	-	-	1050				
Ø 55	-	-	-	-	1155				

Таблица 1

Винты			Размер					
ринты		од ключ SW ₈ [мм		01	0	1	2	3
Предохранительный винт в регулировочной гайке	Кол-во, размерность	M ₈	[MM]	1 x M4	1 x M5	1 x M6	1 x M6	1 x M8
	Размер под ключ	SW ₈	[MM]	3	4	5	5	6
	Момент затяжки	T _A	[HM]	3	5,5	9,5	9,5	23
с зажимным кольцом	Кол-во, размерность	M ₉	[MM]	1 x M6	1 x M8	1 x M10	1 x M12	1 x M14
	Размер под ключ	SW ₉	[MM]	5	6	8	10	12
	Момент затяжки	T _A	[HM]	16	40	79	135	220

EAS®-compact® Опции

EAS®-compact® жесткая на кручение Модульная структура

EAS®-compact® храповые-, синхронные- и рассоединяющие муфты могут быть в комбинации практически со всеми конструктивными частями беззазорных соединительных муфт ROBA®-DS. Распространенные виды подбора различных Типов можно найти на стр. 16 и 17 и соответственно стр. 32 до 35.

Мы охотно посоветуем Вам при выборе размеров и расчете параметров Вашей оптимальной модели.

Отсчитываемая установка крутящего момента

EAS®-compact® обеспечивает удобство отсчитываемой регулировки крутящего момента на регулировочной гайке (для Размеров от 01 до 3). Считываемость с одной стороны, означает значительное облегчение регулировки крутящего момента, с другой стороны, означает простоту контроля заданной установки срабатывания у установленной муфты.

- Благодаря регулировочной гайке с резьбой малого шага и удобной градуировке, предельный крутящий момент может быть чувствительно отрегулирован и точно считываться.
- Против самопроизвольного, непреднамеренного изменения заданного предельного момента защищает стопорение с геометрическим (соотв. фрикционным) замыканием регулировочной гайки. Блокировочное защитное устройство предотвращает затяжку тарельчатых пружин до предела (нерабочего состояния).

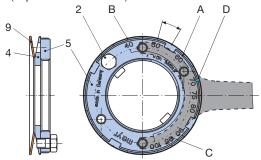


Рис. 1: EAS®-compact® храповая- и синхронная муфта

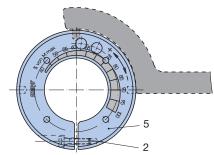


Рис. 2: EAS®-compact® рассоединяющая муфта

Рис. 3 (Диаграмма только в качестве примера)

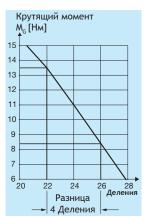


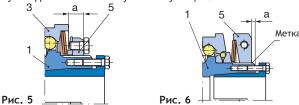
Рис. 4 (Диаграмма только в качестве примера)

В зависимости от вида и конфигурации привода могут возникать пики крутящих моментов (например, из-за скачков крутящего момента при запуске асинхронных двигателей), которые значительно превышают рабочий крутящий момент устройства (двигателя).

Такое поведение должно учитываться заказчиком при проектировании и соответственно при установке крутящего момента муфты.

Установка крутящего момента

Установка производится путем поворота регулировочной гайки (5) (Размеры от 03 до 3) или установочного винта (6) (Размеры 4 и 5).


Установленные тарельчатые пружины (9) работают в отрицательном диапазоне характеристической кривой (Рис. 3). Более сильная затяжки вызывает уменьшение силы пружины. Поворот регулировочной гайки (5) (Размеры от 03 до 3) или установочного винта (6) (Размеры 4 и 5) по часовой стрелке приводят к уменьшению крутящего момента, поворот против часовой стрелки увеличивает крутящий момент (смотреть по направлению на регулировочную гайку (5). Рис. 1 и 2).

EAS®-compact® храповая- синхронная- и рассоединяющая муфта, если заказчик не требует какой-либо другой установки крутящего момента, обычно устанавливается на уровне около 70% от соответствующего значения максимального крутящего момента и маркируется (калибруется). Соответствующая установка крутящего момента или регулируемый диапазон крутящего момента видны на шильдике (фирменной наклейке).

Контроль "использования пружин в рабочем диапазоне" может быть выполнен при помощи величины "а".

- □ EAS®-compact® храповая- и синхронная муфта (Размеры 01 3): Величина "а" это расстояние от торца регулировочной гайки (5) до торца нажимной шайбы (3) (Рис. 5).
- □ EAS®-compact® рассоединяющая муфта (Размеры 01 3): Величина "а" это расстояние от торца регулировочной гайки (5) до края втулки (1) (Рис. 6).

Информацию можно найти в соответствующих Инструкциях -Руководствах по монтажу и эксплуатации.

EAS®-NC Размеры 03 и 02 должны быть настроены, в случае, если нет установки и калибровки на заводе, с помощью диаграммы настройки (запросить по мере необходимости).

EAS®-NC Размер 03 (Рис. 7):

- Выкрутить оба установочных винта (8) из регулировочной гайки (5).
- Смазать резьбу регулировочной гайки (5) и втулки (1).
- Регулировочную гайку (5) установить на желаемый размер "а" (из диаграммы настройки) с помощью крючкового ключа.
- Смазать Loctite 243 оба установочных винта (8), ввернуть в регулировочную гайку (5) и затянуть.

EAS®-NC Размер 02 (Рис. 8 и Рис. 4):

- Ослабить предохранительный винт (2).
- Резьбу и поверхность прилегания регулировочной гайки (5), стопорного кольца (4) и втулки (1) смазать.
- Накрутить регулировочную гайку (5) вручную, пока она не коснется тарельчатой пружины (9).
- Продолжать вращать до тех пор, пока не совпадут четыре прорези по окружности регулировочной гайки (5) и прорези в стопорном кольце (4).
- Повернуть регулировочную гайку (5) с помощью торцевого штифтового ключа на количество делений, соответствующих требуемому крутящему моменту (Рис. 4, количество делений на диаграмме настроек). Четыре прорези по окружности регулировочной гайки (5) и на стопорном кольце (4) должны быть в одинаковом положении.

 На предохранительный винт (2) нанести клей Loctite 243 и вкрутить в регулировочную гайку (5).

Регулировка крутящего момента

Размеры 01 до 3 (Рис. 1, 2 и 6):

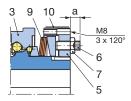
 Рассчитать необходимый крутящий момент по указанной ниже формуле в процентах от максимального значения настройки.

Необходимая установка крутящего момента х 100 = установка в % Макс. установка крутящего момента (смотри Таблицу технических данных)

- Ослабить предохранительный винт (2) в регулировочной гайке (5).
- Регулировочную гайку (5) согласно шкале настройки с делениями (Рис. 1 и 2) вращать по часовой стрелке или против нее с помощью крючкового или торцевого штифтового ключа, пока не будет настроен требуемый крутящий момент.
- Требуемый крутящий момент получается:
 - □ когда метка (D) на стопорном кольце (4) совпадает с заданным значением процента (C) на регулировочной гайке (5) (храповая и синхронная муфта, Рис. 1), или соответственно
- □ когда метка на втулке (1) совпадает с заданным значением процента на регулировочной гайке (5) (рассоединяющая муфта, Рис. 2 и 6).
- На предохранительный винт (2) нанести Loctite 243 и ввернуть в регулировочную гайку (5); при этом четыре прорези (A) в регулировочной гайке (5) и пазы (B) в стопорном кольце (4) должны находиться в одинаковом положении (Рис. 1). При необходимости нужна легкая корректировка.


Пример:

EAS®-compact® Размер 3, Тип 490.610.0 ($\rm M_G$ макс. = 350 Hм): Установка крутящего момента = 70 % от $\rm M_G$ макс. = 245 Hм. Установка крутящего момента должна быть увеличена с 245 Hм до 280 Hм.


• Установка момента в % от ${\rm M_G}$ макс. определяется с помощью ниже следующей формулы:

280	x 100 = 80 %
350	x 100 = 80 %

 Регулировочную гайку (5) на основании градуировки на торце (Рис. 1) подкрутить с помощью торцевого штифтового ключа от 70 % установки момента против часовой стрелки на 80 % установки момента.

Размеры 4 и 5 (Рис. 9 и 10):

Крутящий момент регулируется исключительно с помощью установочных винтов (6), а не с помощью регулировочной гайки (5):

- Ослабить все шестигранные гайки (7).
- Равномерно отрегулировать все установочные винты (6) до желаемого размера "а" с помощью ключа с внутренним шестигранником.
 - □ EAS®-compact® храповая- и синхронная муфта, Размер 4: Величину размера "а" взять из наклеенной на муфту Таблицы регулировки (Рис. 9).
 - □ EAS®-compact® рассоединяющая муфта, Размеры 4-5: Величину размера "а" взять из наклеенной на регулировочную гайку (5) Таблицы регулировки (10) (Рис. 10).
- Законтрить установочные винты (6) снова с помощью шестигранных гаек (7).

После разборки муфты (например, для замены тарельчатых пружин или изменения слоев тарельчатых пружин) крутящий момент для муфты должен быть вновь установлен.

Повторное зацепление EAS®-compact® рассоединяющая муфта

Повторное зацепление предохранительной муфты EAS®-compact® осуществляется путем простого осевого нажатия на нажимную шайбу (3). По возможности, требуется небольшое проворачивание между стороной привода и стороной выхода муфты.

Повторное зацепление должно осуществляться только в неподвижном состоянии или при незначительной относительной скорости вращения (< 10 мин⁻¹).

Более подробное объяснение повторного зацепления Вы найдете в соответствующей Инструкции - Руководстве по монтажу и эксплуатации.

В зависимости от имеющихся средств, доступности места монтажа и т. д. повторное зацепление может быть выполнено различными способами:

Размеры 01 до 3:

- Вручную, при помощи капронового молотка или монтажного рычага, опирающегося на регулировочную гайку (5) (например, использовать две отвертки, находящиеся друг напротив друга).
- □ При помощи зацепляющего приспособления. Автоматизировать процесс можно также и при помощи пневматических или гидравлических цилиндров.

Размеры 4 и 5:

□ Путем равномерного ввинчивания трех шестигранных винтов М8 (подготовленных заказчиком) в регулировочную гайку (5) (Рис. 10).

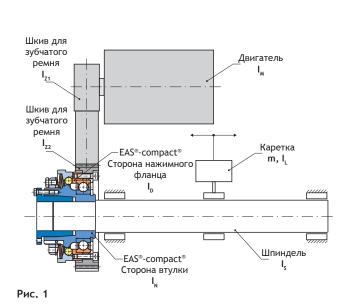
После повторного зацепления три винта с шестигранной головкой должны быть немедленно удалены, иначе муфта не сможет работать (блокировка).

- ☐ При помощи двух отверток, вставленных друг напротив друга и опирающихся на тарельчатые пружины (9).
- □ При помощи зацепляющего приспособления. Автоматизировать процесс можно также и при помощи пневматических или гидравлических цилиндров.

Допустимые нагрузки на подшипники

Выходной /ведомый элемент центрируется (посадка H7/h5) на радиальном шарикоподшипнике и прикручивается к фланцу (3) болтами.

Если результирующая радиальная сила от рабочего ведомого элемента приблизительно лежит в центре шарикоподшипника и по значению ниже максимально допустимой радиальной нагрузки в соответствии с Таблицей 1, можно обойтись без дополнительной опоры/подшипника рабочего выходного (ведомого) элемента.


Там не должны появляться никакие значительные осевые силы (Таблица 1) от ведомого элемента на нажимной фланец (3) муфты.

Допустимые нагрузки			Размер								
на подшипники			03	02	01	0	1	2	3	4	5
Осевое усилие	F	[кН]	0,12	0,28	0,65	1	1,5	2,4	4,2	5	7,7
Радиальное усилие $F_{_{R}}$ [кН]											
1-подшипник-исполн	ени	ıe	0,1	0,25	0,65	1	1,5	2,4	4,2	5	-
2-подшипника-исполнение			0,15	0,375	1	1,5	2,25	3,6	6,3	7,5	11,5
Моменты поперечных сил *	M _Q	[HM]	0,5	1,5	5	10	20	30	40	50	70

Таблица 1

* Моменты, которые благодаря эксцентричным, действующим на нажимной фланец осевым силам, нагружают радиальный шарикоподшипник

Выбор Размера, расчет энергии, Установка крутящего момента для горизонтальных осей сервоприводов

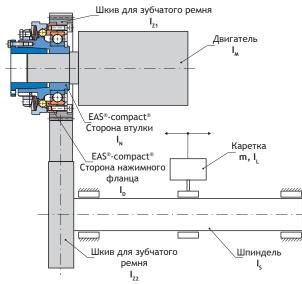
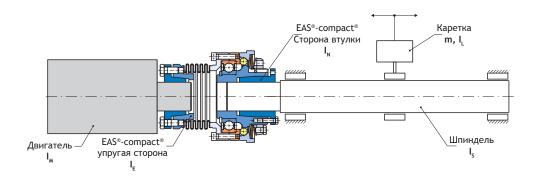



Рис. 2

Компоновка Рис. 1

Компоновка Рис. 2

Компоновка Рис. 3

Полный момент инерции без муфты EAS®-compact®

$$I_g = I_M + I_{Z1} + (I_{Z2} + I_S + I_L) \cdot (\frac{n_2}{n_1})^2$$

I, из уравнения (7)

$$I_{g} = \int_{M}^{M} + I_{21} + (I_{22} + I_{5} + I_{L} \frac{n_{2}}{n_{1}})^{2}$$

$$I_g = I_M + I_{Ku} + I_S + I_L$$
 [кгм²] (1)

Момент инерции стороны привода относительно вала с муфтой EAS®-compact®

$$I_1 = I_D + I_{Z2} + (I_{Z1} + I_M) \cdot (\frac{n_1}{n_2})^2$$

$$I_1 = I_M + I_N$$

$$I_1 = I_M + I_E$$

Момент инерции стороны выхода (сторона шпинделя) относительно вала с муфтой EAS®-compact®

$$I_2 = I_N + I_S + I_L$$

Рис. 3

$$I_2 = I_D + I_{Z1} + (I_{Z2} + I_S + I_L) \cdot (\frac{n_2}{n_1})^2$$

$$I_2 = I_N + I_S + I_L$$

I, из уравнения (7)

I, из уравнения (7)

I_L из уравнения (7)

Предварительный выбор муфты

$$M_{\text{Heo6x.}} = 1,5 \cdot M_2$$
 M_2 из уравнения (4)

$$M_{\text{Heo6x.}} = 1.5 \cdot M_{1}$$

$$M_{Heo6x} = 1.5 \cdot M_1$$

Компоновка Рис. 1	Компоновка Рис. 2	Компоновка Рис. 3		
Крутящий момент на шпинделе				
$M_2 = M_1 \cdot \frac{n_1}{n_2}$	как компоновка Рис. 1	как компоновка Рис. 1	[Нм]	(4)
Скорость подачи каретки				
$V = \frac{p \cdot n_2}{6 \cdot 10^4}$	как компоновка Рис. 1	как компоновка Рис. 1	[<u>m</u>]	(5)
Угловая скорость вала двигателя $\omega_{_1}$ и ш	пинделя $\omega_{_{2}}$			
$\omega_1 = \frac{n_1 \cdot \pi}{30} \qquad \omega_2 = \frac{n_2 \cdot \pi}{30}$	как компоновка Рис. 1	как компоновка Рис. 1	[c ⁻¹]	(6)
Масса каретки сведена к шпинделю				
$I_L = \frac{m}{\omega_2^2}$	как компоновка Рис. 1	как компоновка Рис. 1	[кгм²]	(7)
v из уравнения (5), ω_{2} из уравнения (6)				
Энергия при внештатной ситуации (пер	егрузке) без муфты EAS®-compact®			
$W_{g} = \frac{1}{2} \cdot I_{g} \cdot \omega_{1}^{2}$	как компоновка Рис. 1	как компоновка Рис. 1	[Дж]	(8)
${\sf I_g}$ из уравнения (1), $\omega_{\scriptscriptstyle 1}$ из уравнения (6)				
Энергия при внештатной ситуации (пер	егрузке) с муфтой EAS®-compact®			
$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_2^2$	$W_2 \frac{1}{2} \cdot I_2 \cdot \omega_1^2$	$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_1^2$	[Дж]	(9)
${\rm I_2}$ из уравнения (3), $\omega_{\rm 2}$ из уравнения (6)	${\rm I_2}$ из уравнения (3), $\omega_{\scriptscriptstyle 1}$ из уравнения (6)	${\rm I_2}$ из уравнения (3), $\omega_{\rm 1}$ из уравнения (6)		
Остаточная энергия после перегрузки				
$W_{R} = \frac{W_{2}}{W_{g}} \cdot 100$	как компоновка Рис. 1	как компоновка Рис. 1	[%]	(10)
$W_{\rm g}$ из уравнения (8), $W_{\rm 2}$ из уравнения (9)				
Отведенная энергия				
$\Delta W = W_g - W_2$ $\Delta W = 100 - W_R$	как компоновка Рис. 1	как компоновка Рис. 1	[Дж] [%]	(11) (12)
$W_{\rm g}$ из уравнения (8), $W_{\rm 2}$ из уравнения (9),				
Необходимый крутящий момент расцеп	ления во время разгона (Ось горизонтал	льна) Соотношение		
$M_{A} = M_{B} \cdot \frac{I_{2}}{I_{2} + I_{1}} \cdot \frac{n_{1}}{n_{2}}$	Соотношение скоростей вращения $\frac{n_{_1}}{n_{_2}}$ опускается.	скоростей вращения $\frac{n_1}{n_2}$ опускается.	[Нм]	(13)
I_{1} из уравнения (2), I_{2} из уравнения (3)	(Соотношением пренебрегаем)	(Соотношением пренебрегаем)		
	ления во время разгона (Ось направлен			
$M_A = [(M_B \cdot \frac{n_1}{n_2} - M_L) \cdot \frac{l_2}{l_2 + l_1} + M_L] \times 1,2$	$M_{A} = [(M_{B} - M_{L} \cdot \frac{n_{2}}{n_{1}}) \cdot \frac{l_{2}}{l_{2} + l_{1}} + M_{L} \cdot \frac{n_{2}}{n_{1}}] \times 1,2$ M_{L} из уравнения (15)	$M_A = [(M_B - M_L) \cdot \frac{I_2}{I_2 + I_1} + M_L] \times 1,2$	[HM]	(14)
М _L из уравнения (15)	М _. из уравнения (15)	М _L из уравнения (15)		
Нагружающий момент массы каретки п	ри направлении оси шпинделя произвол	ьным образом		
$M_{L} = \frac{m \cdot g \cdot \sin \alpha \cdot p}{2 \cdot \pi \cdot 1000}$	как компоновка Рис. 1	как компоновка Рис. 1	[HM]	(15)
т Шπиндель				
11111111111				
Установка предельного значения крутя	щего момента			
M _G = 1,5 · M ₂ М, из уравнения (4)	$M_G = 1,5 \cdot M_1$	$M_{G} = 1,5 \cdot M_{2}$ M_{2} из уравнения (4)	[Нм]	(16)
Условие: Крутящий момент расцепле	ния М _а , из уравнения (13) или (14) (умнож истановленный на муфте крутящий момент	енный на Фактор/Коэффициент 1,2)		

Пример расчета

Компоновка как на Рис.1

Данные:

Масса каретки = 560 KF = 0,0037 KFM² Момент инерции двигателя = 0,0006 KFM² Момент инерции = 0,01132 KFM² шкивов зубчатого ремня Момент инерции шпинделя $= 0,00067 \text{ KFM}^2$ Частота вращения привода мотора = 2000 мин⁻¹ Частота вращения шпинделя = 1000 мин⁻¹ Ход шпинделя = 10 MM Номин. крутящий момент двигателя M. = 14 HM Макс. крутящий момент двигателя = 40 HM

Предварительный выбор муфты

$$M_{\text{необх.}} = 1,5 \cdot M_2$$
 M_2 из уравнения (4)

$$M_{Heo6x.} = 1.5 \cdot 28 = 42$$
 [HM]

Выбрано: EAS®-compact® Размер 0, Тип 490.610.0 Диапазон моментов для перегрузки $M_{\rm G}$ = 20 ÷ 50 Hм (из Технических данных, Стр. 9)

Момент инерции муфты EAS®-compact®

Сторона втулки $I_{_{\rm N}}=0,000531~{\rm кгm^2}$ (из Техн. данных, Стр. 9) Сторона нажимного фланца $I_{_{\rm D}}=0,000234~{\rm кгm^2}$ (из Техн. данных, Стр. 9)

Полный момент инерции без муфты EAS®-compact®

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$
 уравнения (7)
$$I_{g} = 0,0037 + 0,0006 + (0,01132 + 0,00067 + 0,00142) \cdot (\frac{1000}{2000})^{2}$$

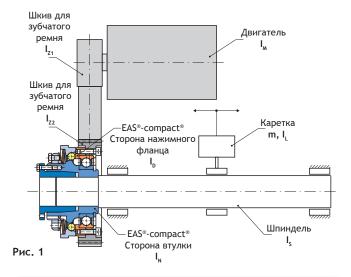
$$I_{g} = 0,00765$$
 [кгм²] (1)

Момент инерции стороны привода относительно вала с муфтой EAS®-compact®

$$I_{1} = I_{D} + I_{Z2} + (I_{Z1} + I_{M}) \cdot (\frac{n_{1}}{n_{2}})^{2}$$

$$I_{1} = 0,000234 + 0,01132 + (0,0006 + 0,0037) \cdot (\frac{2000}{1000})^{2}$$

$$I_{1} = 0,0287$$
[KFM²] (2)


Момент инерции стороны выхода (сторона шпинделя) относительно вала с муфтой EAS $^{\circ}$ -compact $^{\circ}$

Крутящий момент на шпинделе

$$M_2 = M_1 \cdot \frac{n_1}{n_2} = 14 \cdot \frac{2000}{1000} = 28$$
 [HM] (4)

Скорость подачи каретки

$$v = \frac{p \cdot n_2}{6 \cdot 10^4} = \frac{10 \cdot 1000}{6 \cdot 10^4} = 0,1667 \qquad \left[\frac{m}{c}\right] \quad (5)$$

Угловая скорость вала двигателя ω_1 и шпинделя ω_2

$$\omega_{1} = \frac{n_{1} \cdot \pi}{30} = \frac{2000 \cdot \pi}{30} = 209 \qquad [c^{-1}] \quad (6)$$

$$\omega_{2} = \frac{n_{2} \cdot \pi}{30} = \frac{1000 \cdot \pi}{30} = 104,7 \qquad [c^{-1}] \quad (6)$$

Масса каретки сведена к шпинделю

$$I_L = m \cdot \frac{v^2}{\omega_2^2}$$
 = $560 \cdot \frac{0.1667^2}{104.7^2} = 0.00142$ [KFM²] (7)

V из уравнения (5), ω_2 из уравнения (6)

Энергия при внештатной ситуации (перегрузке) без муфты EAS®-compact®

$$W_g = \frac{1}{2} \cdot I_g \cdot \omega_1^2 = \frac{1}{2} \cdot 0,00765 \cdot 209^2 = 167$$
 [Дж] (8)

 I_{s} из уравнения (1), ω_{1} из уравнения (6)

 I_{2} из уравнения (3), ω_{2} из уравнения (6)

Энергия при внештатной ситуации (перегрузке) с муфтой EAS®-compact®

$$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_2^2 = \frac{1}{2} \cdot 0,00262 \cdot 104,7^2 = 14$$
 [Дж] (9)

Остаточная энергия после перегрузки

$$W_R = \frac{W_2}{W_g} \cdot 100 = \frac{14}{167} \cdot 100 = 8,4$$
 [%] (10)
 W_a из уравнения (8), W_2 из уравнения (9)

Отведенная энергия

$$\Delta W = W_g - W_2$$
 = 167 - 14 = 153 [$\Delta W = 100 - W_R$ = 100 - 8,4 = 91,6 [%] (11)

Необходимый крутящий момент расцепления во время разгона (Ось горизонтальна)

$$M_A = M_B \cdot \frac{l_2}{l_2 + l_1} \cdot \frac{n_1}{n_2} \frac{l_1}{l_2}$$
 из уравнения (2) $0,00262 \cdot 0,00262 \cdot \frac{2000}{1000} = 6,7$ [HM] (13)

Установка предельного значения крутящего момента

$$M_G = 1.5 \cdot M_2 = 1.5 \cdot 28 = 42$$
 [HM] (16)

Условие: Крутящий момент расцепления 1,2 \cdot $M_{_A}$ = 1,2 \cdot 6,7 = 8,04 HM есть меньше, чем установленный на муфте крутящий момент $M_{_G}$ = 42 Hm.

Обозначения

compact®
ct®
азом

Передаваемые фрикционно крутящие моменты

Таблица 1: Соответствие диаметра отверстия d_3/d_4 упругой муфты передаваемому крутящему моменту " T_R " EAS®-compact® синхронные-, храповые- и рассоединяющие муфты Тип 494._0_._/494._1_._

			' '			11	щие муфть Разі			
			Отверстие		01	0	1	2	3	4
			e	d ₃	34	-	-	-	-	-
			Ø 15	d ₄	56	-	-	-	-	-
		-		d ₃	36	-	-	-	-	-
			Ø 16	d ₄	62	-	-	-	-	-
				d ₃	43	79	-	-	-	-
			Ø 19	d ₄	81	141	-	-	-	-
				d ₃	45	83	83	_	_	-
			Ø 20	d ₄	87	153	197	_	-	-
				d ₃	50	91	91		-	-
Передаваемые фрикционно крутящие моменты Зажимная втулка Ø d ₃			Ø 22	d ₄	100	177	228	_	-	-
			Ø 24	d ₃	54	100	100	_	-	-
				d ₄	120	203	261	_	-	-
				d ₃	57	104	104	_	_	-
			Ø 25	d ₄	125	216	279	_	-	-
				d ₃	63	116	116	208	-	-
			Ø 28	d ₄	135	256	332	300		-
				d ₃	- 133	124	124	228	-	-
			Ø 30	d_3	-	282	368	350	-	-
				d ₄	<u> </u>	133	133	248	-	-
			Ø 32	d ₃	-	308	405	400	-	-
			Ø 35	d₃ d₄	-	145	145	280	350 450	-
Действительны для						343	460 158	500 315	450 390	-
посадки F7/k6		-	Ø 38	d ₃	-					-
			Ø 40	d ₄	-	373	513	600	500	-
Втулка с зажимным				d ₃	-	-	166	340	420	-
кольцом Ø d ₄				d ₄	-	-	547	680	600	-
Действительны для посадки H7/k6			Ø 42	d ₃	-	-	174	365	455	-
посадки пилко	T_{R}	[HM]		d ₄	-	-	577	730	720	
			Ø 45	d ₃	-	-	187	404	505	545
Передаваемые моменты зажимного соединения, когда принимают в расчет максимальный зазор переходной посадки при вале с полем допуска k6 / отверстии с полем допуска F7 или соотв. H7. При большем зазоре посадки крутящий момент уменьшается.				d ₄	-	-	617	790	850	1402
			Ø 48	d ₃	-	-	-	442	560	590
				d ₄	-	-	-	850	1000	1596
			Ø 50	d ₃	-	-	-	470	600	630
				d ₄	-	-	-	880	1180	1731
			Ø 52	d ₃	-	-	-	-	640	662
			~	d₄	-	-	-	-	1270	1873
			Ø 55	d ₃	-	-	-	-	705	710
				d ₄	-	-	-	-	1353	2095
			Ø 58	d ₃	-	-	-	-	-	764
				d ₄	-	-	-	-	1428	2308
			Ø 60	d ₃	-	-	-	-	-	800
			2 00	d ₄	-	-	-	-	1471	2420
			Ø 62	d ₃	-	-	-	-	-	840
			202	d₄	-	-	-	-	-	2570
			Ø 65	d ₃	-	-	-	-	-	900
			5 03	d₄	-	-	-	-	-	2750
			Ø 68	d ₃	-	-	-	-	-	954
			<i>D</i> 00	$d_{_4}$	-	-	-	-	-	2989
		-	Ø 70	d ₃	-	-	-	-	-	990
			<i>970</i>	d₄	-	-	-	-	-	3157
			Ø 72	d ₃	-	-	-	-	-	1032
			Ø 72	d₄	-	-	-	-	-	3306
			Ø 75	d ₃	-	-	-	-	-	1095
			כו ש	$d_{_4}$	-	-	-	-	-	3550
			Ø 70	d ₃	-	-	-	-	-	1158
			Ø 78	$d_{_4}$	-	-	-	-	-	-
			Ø 00	d ₃	-	-	-	-	-	1200
			Ø 80	d ₄	-	-	-	-	-	-
				7						

Концевой выключатель Тип 055.00_.5 (бесконтактный)

Применение

Регистрирует и контролирует осевые и радиальные перемещения элементов в соединениях приводов при выходе из зацепления, например, в сочетании с предохранительными муфтами EAS®. Командный датчик для электронных и механических отключений процессов.

Принцип работы

Когда в зону чувствительности над сенсорной поверхностью датчика NAMUR входит металлический управляющий флажок (перекрыто), срабатывает сигнальное реле, оно обесточивается и отключается. Контакты 1 - 2 размыкаются. Перекрытие сенсора датчика возможно со всех сторон.

Электрическое подключение (клеммы)

1 - 2 - 3 беспотенциальные переключающие контакты

5 - 6 подключение входного напряжения

Исполнение

Электронный усилитель встроен в корпус из легкого металла. Крепление концевого выключателя осуществляется с помощью двух диагонально расположенных соединительных фланцев винтами М4 с цилиндрической головкой.

Технические данные

Входное напряжение (в зависимости 115 В переменного тока, ±10 %, 50 - 60 Гц 115 В переменного тока, ±10 %, 50 - 60 Гц от исполнения) 24 В постоянного тока, PELV, ±5 %,

защита от включения с неправильной полярностью, для подключения по категории перенапряжения II

Потребляемая мощность макс. 1,5 ВА

Температура окружающей -10 °C до +60 °C для концевого

среды выключателя -25 °C до +60 °C для датчика NAMUR

Класс защиты IP54

Поперечное сечение провода макс. 2,5 мм² / AWG 14

Вес 400 г / 14 oz (унций)

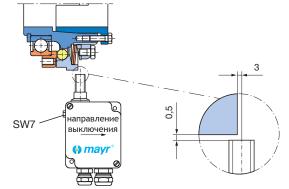
Предохранители устройства 0,1 А/безынерционный при 24 В

постоянного тока (не входит в состав

поставки)

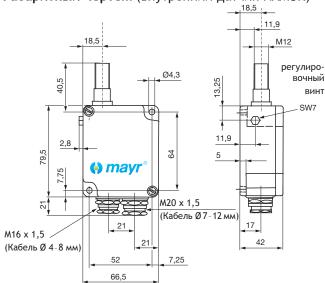
Сигнальное реле беспотенциальные переключающие контакты. Нагрузка на контакты макс. 250 В переменного тока / 12 А

250 В переменного тока / 12 A Материал контактов — AgNi 90/10 макс. частота переключения 20 Гц при мин. нагрузке, 0,1 Гц при макс. нагрузке встроен в корпус из легкого металла, расстояние (зазор) срабатывания S_n 2 мм,

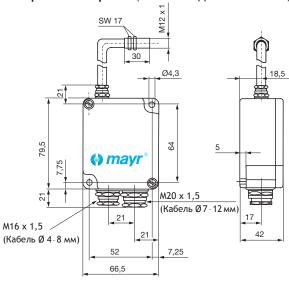

расстояние (зазор) сраоатывания 3, 2 мм, установлен заподлицо, макс. частота переключения 2 кГц, с помощью бокового регулировочного винта SW 7 нулевую

точку можно смещать до 1 мм. Внешний датчик NAMUR в металлическом корпусе M12 x 1, расстояние (зазор) срабатывания S_n 2 мм, установлен заподлицо, макс. частота

переключения 2 кГц, станд. длина кабеля - 2 м, макс. длина - 100 м для специальных исполнений, класс защиты IP67


Монтаж

Внутренний датчик NAMUR



Габаритный чертеж (внутренний датчик NAMUR)

Габаритный чертеж (внешний датчик NAMUR)

Заказной номер

0 5 5 . 0 0 . 5 /

2

Бесконтактное считывание Внешний датчик Внутренний датчик

Напряжение питающей сети 230 В переменного тока 115 В переменного тока 24 В постоянного тока

Концевой выключатель Тип 055.000.5 (механическое приведение в действие)

Применение

Контроль механических перемещений и конечных положений. Командный датчик для электронных и механических отключений технологических процессов. Регистрация осевых перемещений элементов в соединениях приводов при выходе из зацепления, например, в сочетании с предохранительными муфтами EAS®.

Принцип работы

При нажатии на рычаг переключения преднапряженный контакт освобождается:

Контакты 11 - 14 (21 - 24) открываются, 11 - 12 (21 - 22) закрываются.

Исполнение

Микропереключатель, встроенный в корпус из легкого металла, приводится в действие с помощью рычага переключения. Приведение в действие возможно только в одном направлении. Крепление концевого выключателя осуществляется с помощью двух диагонально расположенных соединительных фланцев винтами М4 с цилиндрической головкой.

Технические данные

Виды контакта 1 переключающий контакт

(Спец. исполнение: 2 переклю-

чающих контакта)

Коммутируемая мощность 250 VAC / 15 A (при 2-х

переключающих контактах: 10 A) 24 В постоянного тока / 6 A 60 В постоянного тока / 1,5 A 250 В постоянного тока / 0,2 A мин. 12 В постоянного тока / 10 мА

Материал контактов AgSnO

Частота переключений макс. 200 переключений / мин.

Температура окружающей среды -10 °C до +85 °C

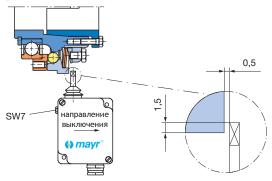
 Класс защиты
 IP54

 Bec
 275 г

Установка хода контакта С помощью боковых регулировоч-

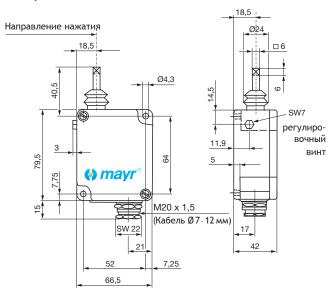
ных винтов (SW7), можно регулировать нулевую точку вправо или влево, макс. до 5 мм Ход до начала переключения:

ход до начала переключения: миним. от 0,15 до 0,5 мм Ход до крайнего положения

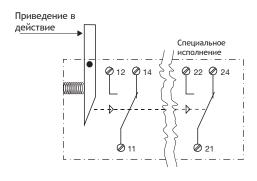

(чрезмерный ход): макс. 10 мм, в зависимости от настройки нуля По запросу возможны, как и другие длины рычага переключения,

так и исполнения с 2-мя переключающими контактами

Монтаж


Ход контакта

Специальные Типы



Габариты

Электрическое присоединение

Заказной номер

0 5 5 . 0 0 0 . 5

Концевой выключатель Тип 055.010.6 (механическое приведение

в действие, многосторонний)

Применение

Концевой выключатель служит для контроля и регистрации осевых или радиальных механических перемещений и конечных положений, например, в сочетании с предохранительными муфтами EAS®. Подходят для муфт с минимальным ходом элемента расцепления от 1,1 мм при радиальном нажатии и 0,9 мм при осевом нажатии.

Принцип работы

При нажатии на металлический толкатель контакт 11-12 открыт.

Электрическое подключение (клеммы)

11 - 12 Размыкающий

Технические данные

Виды контакта 1 х размыкающий контакт, контакт зависимого действия ⊕ Виды контакта (специальное исполнение) Дополнительно 1 х замыкающий (нормально-разомкнутый) контакт, клеммы 23 - 24, гальванически

разделены (Zb)

Открытие контактов см. диаграмму хода переключения Замыкание контактов см. диаграмму хода переключения

Нагружение контактов размыкающий контакт,

250 В переменного тока / 2,5 А 24 В постоянного тока / 1 А мин. 12 В постоянного тока / 10 мА

Зазор (раствор) контактов 250 В переменного тока

>1,25 мм в осевом направлении,

принудительное отключение

Зазор (раствор) контактов 24 В постоянного тока <1,25 мм, мин. 0,5 мм

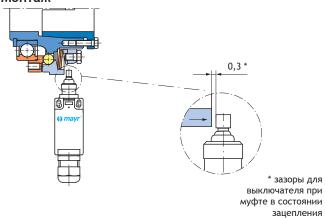
Материал контактов Ag90Ni10

Макс. ток включения по DIN EN 60947-5-1

AC15 / DC13

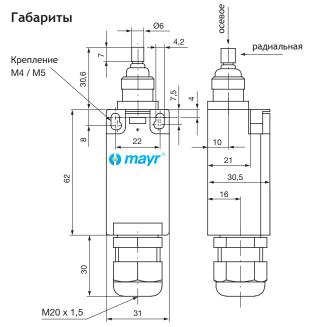
Ход металлического толкателя макс. 4 мм осевой или радиальный Частота переключений макс. 100 переключений/мин. Механический срок службы 1 х 106 коммутационных циклов

под нагрузкой Поперечное сечение провода 1,5 мм 2 / AWG 16 Температура окружающей среды -30 $^{\circ}$ C до +80 $^{\circ}$ C

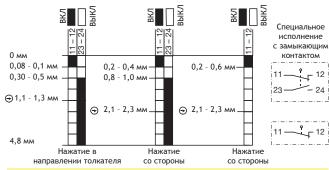

Класс защиты IP65

Защитная изоляция по классу защиты II □ Корпус термопласт, самозатухающий

согласно UL94-V0


Bec 120 r / 4,2 oz

Монтаж



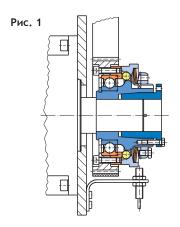
Фиксированное позиционирование для надежного использования с крепежными винтами 2 х М5 (DIN 912).

Диаграмма хода переключения

Не устанавливайте выключатель так, чтобы он постоянно прикасался и обращайте внимание на максимальный ход нажатия (ход металлического толкателя).

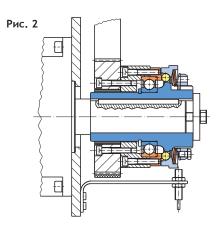
Заказной номер

0 5 5 . 0 1 0 . 6


Примеры установки

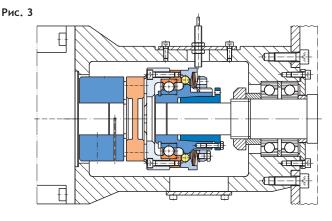
EAS®-compact® короткая втулка

Для муфты EAS®-compact® с короткой втулкой приводной элемент центрируется на радиальном шарикоподшипнике и соединяется с нажимным фланцем винтами. Если результирующая радиальная сила от приводного элемента лежит примерно посередине шарикоподшипника, можно отказаться от дополнительной опоры приводного элемента.



Качество и момент затяжки крепежных винтов приводного элемента должны выбираться так, чтобы заданный предельный крутящий момент передавался фрикционно с достаточной степенью безопасности.

EAS®-compact® длинная выступающая втулка


Для очень широких приводных элементов или для элементов с очень маленьким диаметром рекомендуется EAS®-compact® с длинной выступающей втулкой. При небольшом диаметре приводной элемент привинчивается к нажимному фланцу муфты через промежуточный фланец, изготовленный заказчиком. В качестве опоры для приводного элемента, в зависимости от ситуации установки и пространства для монтажа, подходят шарикоподшипники, игольчатые роликовые подшипники или подшипники скольжения.

EAS®-compact® с упругой соединительной муфтой

EAS®-compact® с беззазорной, упругой на кручение и гасящей вибрации муфтой для соединения двух валов. Муфта компенсирует осевые, радиальные и угловые отклонения валов. По сравнению с EAS®-compact® в сочетании с муфтой с металлическим сильфоном она упруга на кручение в узких рамках в окружном направлении.

В примере установки справа EAS®-compact® упругая беззазорная муфта установлена между двигателем и винтом шариковинтовой пары. Крутящий момент до расцепления передается муфтой без люфта и сразу же падает после перегрузки. Бесконтактный концевой выключатель (инициатор) подает сигнал на выключение привода.



EAS° -compact $^{\circ}$ с муфтой с металлическим сильфоном

EAS®-compact® с жесткой на кручение гибкой муфтой с металлическим сильфоном для соединения двух валов. Муфта компенсирует осевые, радиальные и угловые отклонения валов. В окружном направлении она жесткая на кручение.

По сравнению с муфтой EAS®-compact® в сочетании с муфтой ROBA®-D муфта EAS®-compact® в сочетании с муфтой с металлическим сильфоном имеет более низкий момент инерции массы.

В примере установки справа EAS®-compact® с муфтой с металлическим сильфоном установлена между двигателем и винтом шарико-винтовой пары. Крутящий момент до расцепления передается муфтой без люфта и сразу же падает после перегрузки. Бесконтактный концевой выключатель (инициатор) подает сигнал на выключение привода.

Обзор продукции

Предохранительные муфты

■ EAS®-compact®/EAS®-NC

Абсолютно беззазорные предохранительные муфты с геометрическим замыканием

EAS®-smartic®

Экономичные предохранительные муфты с быстрой установкой

■ EAS®-Elementekupplung/EAS®-Elemente

Разъединяющие нагрузку ограничители больших крутящих моментов

■ EAS®-axial

Точное ограничение сил растяжения, сжатия

EAS®-Sp/EAS®-Sm/EAS®-Zr

Разделяющие без остаточного крутящего момента предохранительные муфты с функцией переключения

ROBA®-Rutschnaben

Удерживающие нагрузку фрикционные предохранительные муфты

ROBA®-contitorque

Магнитные муфты с длительным проскальзыванием

EAS®-HSC/EAS®-HSE

Высокоскоростные предохранительные муфты для применений на больших оборотах

Соединительные муфты для валов

smartflex®/primeflex®

Превосходные прецизионные сильфонные муфты для серво- и шаговых двигателей

ROBA®-ES

Беззазорные и гасящие колебания упругие муфты для приводов с критическим режимом вибрации

ROBA®-DS/ROBA®-D

Беззазорные, жесткие на кручение цельностальные муфты

■ ROBA®-DSM

Экономичные муфты измерения крутящего момента

Электромагнитные тормоза/муфты

■ ROBA-stop® Standard

Многофункциональные универсальные предохранительные тормоза

■ ROBA-stop®-M Motorbremsen

Прочные, экономичные тормоза для двигателей

■ ROBA-stop®-S

Водонепроницаемые, прочные моноблочные тормоза

ROBA-stop®-Z/ROBA-stop®-silenzio®

Вдвойне безопасные тормоза для подъемных устройств

ROBA®-diskstop®

Компактные, очень тихие дисковые тормоза

ROBA®-topstop®

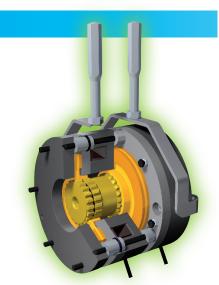
Тормозные системы для осей, нагруженных силой тяжести

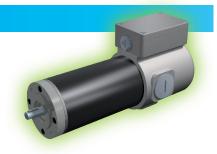
ROBA®-linearstop

Беззазорные тормозные системы для осей линейных приводов

■ ROBA®-guidestop

Удерживающие тормоза для направляющих


ROBATIC®/ROBA®-quick/ROBA®-takt


Приводимые в рабочее состояние напряжением муфты и тормоза, агрегаты муфта-тормоз

Приводы постоянного тока

tendo®-PM

Двигатели постоянного тока с постоянными магнитами

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Сервис в Германии/Австрия

Baden-Württemberg Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0

Fax: 07 11/45 96 01 10

Industriestraße 51 82194 Gröbenzell

Bavaria

Tel.: 0 81 42/50 19 80-7

Chemnitz Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

Franken Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Kamen Herbert-Wehner-Straße 2 59174 Kamen Tel.: 0 23 07/24 26 79 Fax: 0 23 07/24 26 74

North Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78 Rhein-Main Kreuzgrundweg 3a 36100 Petersberg Tel.: 06 61/96 21 02 15

Austria Pummerinplatz 1, TIZ I, A27 4490 St. Florian, Austria Tel.: 0 72 24/2 20 81-12 Fax: 07224/2208189

Филиалы

Mayr Zhangjiagang Power Transmission Co., Ltd. Fuxin Road No.7, Yangshe Town 215637 Zhangjiagang Tel.: 05 12/58 91-75 67

Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30 Fax: 00 65/65 60 10 00 info@mayr.com.sq

Great Britain Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00

Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75 info@mayr.ch

France Mayr France S.A.S. Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA Mayr Corporation 10 Industrial Avenue Mahwah NJ 07430 Tel.: 2 01/4 45-72 10 Fax: 201/445-8019 info@mayrcorp.com

Italy Mayr Italia S.r.l. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

Turkey Representative Office Turkey Kucukbakkalkoy Mah. Brandium Residence R2 Blok D:254

34750 Atasehir - Istanbul, Turkey Tel.: 02 16/2 32 20 44 Fax: 02 16/5 04 41 72 info@mayr.com.tr

Представительства

Drive Systems Pty Ltd. 12 Sommersby Court Lysterfield, Victoria 3156 Australien Tel.: 0 3/97 59 71 00

dean.hansen@drivesystems.com.au

Poland Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0 22/8 15 61 80 wamex@wamex.com.pl

National Engineering Company (NENCO) J-225, M.I.D.C. Bhosari Pune 411026 Tel.: 0 20/27 13 00 29 Fax: 0 20/27 13 02 29 nenco@nenco.org

South Korea Mayr Korea Co. Ltd. 15, Yeondeok-ro 9beon-gil Seongsan-gu 51571 Changwon-si Gyeongsangnam-do. Korea Tel.: 0 55/2 62-40 24 Fax: 055/262-4025

info@mayrkorea.com

MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 106-8641 Tel.: 03/35 86-41 41 Fax: 03/32 24 24 10 k.goto@matsui-corp.co.jp

Taiwan German Tech Auto Co., Ltd. No. 28, Fenggong Zhong Road, Shengang Dist., Taichung City 429, Taiwan R.O.C. Tel.: 04/25 15 05 66 Fax: 04/25 15 24 13 abby@zfgta.com.tw

Netherlands Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09 aandrijftechniek@groneman.nl

BMC - TECH s.r.o. Hviezdoslavova 29 b 62700 Brno Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmc-tech.cz

Czech Republic

Россия

StancoSpezService Konjushkovskaja str. 26, b. 1, 123242 Moscow Tel.: +7 499 252 50 16, +7 499 253 97 96, +7 495 776 56 54 www.stankoss.ru, E-Mail: stankoss@stankoss.ru